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Figure 1: Various Dq-brane configurations in a black Dp-brane background with increasing tem-

perature from left to right. For low temperatures, the probe branes close off smoothly above the

horizon. For high temperatures, the branes fall through the event horizon. In between, a critical

solution exists in which the branes just ‘touch’ the horizon at a point.

1. Introduction

In a broad class of large-Nc, strongly coupled gauge theories with a holographic dual, a

small number of flavours of fundamental matter, Nf ≪ Nc, may be described by Nf probe

Dq-branes in the gravitational background of Nc black Dp-branes [1]. At a sufficiently high

temperature T , the background geometry contains a black hole [2]. It was recently shown

that these systems generally undergo a universal first order phase transition characterised

by a change in the behaviour of the fundamental matter [3].1

From the viewpoint of the holographic description, the basic physics behind this tran-

sition is easily understood. Increasing the temperature increases both the radial position

and the energy density of the event horizon in the Dp-brane throat. For a sufficiently

small temperature or a sufficiently large separation for the Dq-branes, the probe branes

are gravitationally attracted towards the horizon but their tension is sufficient to balance

this attractive force. The probe branes then lie entirely outside of the black hole in what we

call a ‘Minkowski’ embedding (see figure 1). However, above a critical temperature Tfun, the

gravitational force overcomes the tension and the branes are pulled into the horizon. We

refer to such configurations where the branes fall through the horizon as ‘black hole’ em-

beddings. In between these two phases, there exists a critical solution which just ‘touches’

the horizon. In [3], we showed that in the vicinity of this critical solution the embeddings

show a self-similar behaviour. As a result, multiple solutions of the embedding equations

exist for given temperature in a regime close to Tfun. Using thermodynamic considerations

to select the true ground state then reveals a first order phase transition at Tfun, where the

probe branes jump discontinuously from a Minkowski to a black hole embedding.

In the dual field theory,2 this phase transition is exemplified by discontinuities in,

e.g., the quark condensate 〈ψ̄ψ〉 or the contribution of the fundamental matter to the

1Specific examples of this transition were originally seen in [4, 5] and aspects of these transitions in

the D3/D7 system were independently studied in [6, 7]. Recently, similar holographic transitions have also

appeared in a slightly different framework [8].
2Recall for these supersymmetric field theories, the fundamental matter includes both fermions and

scalars, which we will refer to collectively as ‘quarks’.
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energy density. However, the most striking feature of this phase transition is found in the

spectrum of the mesons, i.e., the quark-antiquark bound states. The latter correspond to

excitations supported on the probe branes — see, e.g., [9 – 11]. In the low-temperature

or Minkowski phase, the mesons are stable (to leading order within the approximations

of large Nc and strong coupling) and the spectrum is discrete with a finite mass gap. In

the high-temperature or black hole phase, stable mesons cease to exist. Rather one finds

a continuous and gapless spectrum of excitations [12, 13]. Hence the first order phase

transition is characterised by the dissociation or ‘melting’ of the mesons.

This physics is particularly interesting in theories that exhibit a confine-

ment/deconfinement phase transition. The dual description of the confining, low-

temperature phase involves a horizon-free background. At a temperature Tdeconf the theory

undergoes a phase transition at which the gluons and the adjoint matter become decon-

fined, at which point the dual background develops a black hole horizon [2]. However, if

the mass of the fundamental matter is large enough, the branes remain outside the hori-

zon and therefore mesonic bound states survive for temperatures Tdeconf < T < Tfun. At

T = Tfun the branes finally fall into the horizon, i.e., the mesons melt. This physics is in

qualitative agreement with that observed in QCD for heavy-quark mesonic bound states.

For example, lattice calculations suggest that charmonium states such as the J/ψ meson

melt at temperatures between 1.65Tdeconf results for the QCD deconfinement temperature

are in the range: Tdeconf ≃ 151 to 192 MeV [17]. Although the holographic description may

provide some useful geometric intuition for this phenomenon, there are also some caveats

that we will discuss in due course.

An overview of the paper is as follows: in section 2, we review the throat geometries

for black Dp-branes which are dual to (p + 1)-dimensional super-Yang-Mills (SYM) at

finite temperature [18]. Section 3 reviews and expands on the self-similar behaviour of the

embeddings near the critical solution for general Dp/Dq systems, as originally presented

in [3]. In the subsequent detailed discussion of the thermodynamics, we focus our attention

on the D3/D7 [4] and D4/D6 [5] cases for concreteness. In section 4, we compute the

free energy, entropy and energy densities, as well as the speed of sound for the D3/D7

system. We also study the meson spectrum on the Minkowski embeddings in this section.

This spectrum is related to the dynamical stability, or lack thereof, of this phase, as we

find that tachyonic modes appear where thermodynamic considerations indicate that these

embeddings are unstable. Section 5 repeats the salient calculations for the D4/D6 system.

Then section 6 concludes with a discussion of results. Finally there are several appendices

containing various technical details. Appendix A provides an analytic description of the

D7-brane embeddings at very high and very low temperatures. Then appendix B presents

some of the details of the calculation of the entropy density contributed by the D7-branes.

Appendix C discusses the appearance of the ‘swallow tail’ form in the plots of the free

energy, e.g., figure 5. Appendix D provides a calculation of the constituent quark mass in

the low temperature phase of the fundamental matter. Finally, appendix E discusses the

holographic renormalization of the D4-brane background.
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2. Black Dp-branes

In this section we briefly review the relevant aspects of the throat geometries and thermo-

dynamics of black Dp-branes. This will be of use in subsequent sections, in particular, in

sections 4 and 5, where we specialise to black D3- and D4-brane backgrounds, respectively.

2.1 Supergravity background

The supergravity solution corresponding to the decoupling limit of Nc coincident black

Dp-branes is, in the string frame (see, e.g., [19] and references therein),

ds2 = H− 1
2
(

−fdt2 + dx2
p

)

+ H
1
2

(

du2

f
+ u2dΩ2

8-p

)

,

eΦ = H
3−p

4 ,

C01...p = H−1 , (2.1)

where H(u) = (L/u)7−p and f(u) = 1− (u0/u)7−p. The horizon lies at u = u0. The length

scale L is defined in terms of the string coupling constant gs and the string length ℓs:

L7−p = gsNc (4πℓ2
s)

7−p

2 Γ( 7−p

2
) /4π . (2.2)

For the special case p = 3, L is the radius of curvature for the AdS5×S5 geometry appearing

in eq. (2.1).

According to the general gauge/gravity duality of [18], type II string theory in these

backgrounds is dual to the super-Yang-Mills SU(Nc) gauge theory on the (p+1)-dimensional

worldvolume of the Dp-branes. For general p (6= 3), the gauge theory is distinguished from

the conformal case (p = 3) by the fact that the Yang-Mills coupling gYM is dimensionful.

The holographic dictionary provides

g2
YM = 2πgs(2πℓs)

p−3 . (2.3)

Hence there is a power-law running of the dimensionless effective coupling with the energy

scale U :

g2
eff = g2

YMNc Up−3 , (2.4)

where U = u/α′ by virtue of the usual energy/radius correspondence. The absence of

conformal invariance for the general case is manifested in the dual geometry by the ra-

dial variation of both the string coupling and the spacetime curvature. The supergravity

solution (2.1) is a trustworthy background provided that both the curvatures and string

coupling are small. Hence in these general dualities, the supergravity description is lim-

ited to an intermediate regime of energies in the field theory or of radial distances in the

background. This restriction is succinctly expressed in terms of the effective coupling (2.4)

as [18]:

1 ≪ geff ≪ N
4

7−p
c . (2.5)

Hence the field theory is always strongly coupled where the dual supergravity description

is valid.
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With the event horizon at u = u0, Hawking radiation appears in the background with

a temperature fixed by the surface gravity T = κ/2π. This temperature is identified with

that of the dual (p + 1)-dimensional gauge theory. In the geometry (2.1), the temperature

can also be determined by demanding regularity of the Euclidean section obtained through

the Wick rotation t → itE. Then tE must be periodically identified with a period β where

1

β
= T =

7 − p

4πL

(u0

L

)
5−p

2
. (2.6)

In some cases, one periodically identifies some of the Poincaré directions xp in order

to render the theory effectively lower-dimensional at low energies; a prototypical example

is that of a D4-brane with one compact space direction — see, e.g., [2, 5]. Under these

circumstances a different background with no black hole may describe the low-temperature

physics, and a phase transition at T = Tdeconf may occur [2]. In the gauge theory this is typ-

ically a confinement/deconfinement phase transition for the gluonic (or adjoint) degrees of

freedom. Throughout this paper we assume that T > Tdeconf, in which case the appropriate

gravitational background has an event horizon, as in eq. (2.1).

2.2 Thermodynamics

Now as alluded to above, with the Wick rotation t → itE, the Euclidean path integral

yields a thermal partition function. Further the Euclidean black hole is interpreted as a

saddle-point in this path integral and so the gravity action evaluated for this classical solu-

tion is interpreted as the leading contribution to the free energy, i.e., IE = βF — see, e.g.,

[20]. Hence to study the gauge theory thermodynamics holographically, one needs to eval-

uate the supergravity action IE for the Euclidean version of the above backgrounds (2.1).

This suffers from IR (large radius) divergences, but these may be regulated by adding ap-

propriate boundary terms to the action. These boundary terms were originally found for

asymptotically AdS backgrounds, such as the black D3-brane, in [21, 22]. As we discuss

in appendix E, similar surface terms should exist in the general gauge/gravity dualities

to complete the holographic description. Here we simply comment that for the black D4-

brane, which is the relevant background in section 5, we are guided in the construction of

these counterterms by considering the M5-brane counterpart in M-theory. In any event,

after including the appropriate boundary terms, the Euclidean action is finite.3 Then

with F = TIE and standard thermodynamic relations, various thermal quantities can be

determined. For example, the entropy S and the energy E are computed as:

S = −∂F

∂T
, E = F + TS . (2.7)

3For the above backgrounds (2.1) describing the gauge theory on flat p-dimensional space, the action still

contains an IR divergence, namely a factor of the spatial volume eVx =
R

dpx. In the following, we divide all

extensive thermodynamic quantities by eVx so that we are really looking at densities, e.g., eq. (2.11) really

gives the free energy per unit p-volume. When we refer to contributions from the brane probes, the relevant

volume factor is instead that of the defect on which the fundamental matter lives, Vx =
R

ddx.

– 5 –



J
H
E
P
0
5
(
2
0
0
7
)
0
6
7

For the black D3-brane background, the length scale (2.2) is given by L4 = 4πgsNcℓ
4
s,

and the free energy is

F = −π6L8

16G
T 4 = −π2

8
N2

c T 4 , (2.8)

where G is the ten-dimensional Newton’s constant. In terms of the string length and

coupling, the latter is given by:

16πG = (2π)7ℓ8
s g2

s . (2.9)

For the black D4-brane geometry we have L3 = πgsNcℓ
3
s and

F = −210π7L9

37G
T 6 = −25π2

37
λN2

c T 6 , (2.10)

where as usual λ = g2
YMNc denotes the ’t Hooft coupling. (The reader is referred to

appendix E for further discussion of this case.) In general, the free energy for a general

black Dp-brane geometry can be written as [18, 23]

F ∼ N2
c T p+1geff(T )

2(p−3)
5−p , (2.11)

where

g2
eff(T ) = λT p−3 = g2

YMNcT
p−3 (2.12)

is the effective coupling (2.4) evaluated at the temperature scale U = T . In eq. (2.11),

N2
c reflects the number of degrees of freedom in the SU(Nc) gauge theory while T p+1

is the expected temperature dependence for a (p + 1)-dimensional theory. However, the

dependence on geff is a prediction of the holographic framework for the strongly coupled

gauge theory. Note that for the conformal case (p = 3), but only for this case, this factor is

simply unity and so the thermodynamic results can compared to those calculated at weak

coupling [24].

Another quantity that is often studied in the context gauge/gravity duality is the speed

of sound, e.g., [25 – 29]. While this quantity can be inferred from the pole structure of

certain correlators [25, 26], it can also be derived from the thermal quantities discussed

above, with

v2
s =

∂P

∂E
=

∂P

∂T

(

∂E

∂T

)−1

=
S

cV

. (2.13)

Here we have used the fact that for a system without a chemical potential, the pressure and

free energy density are identical up to a sign, i.e., P = −F . Hence ∂P/∂T = −∂F/∂T = S.

Also we use cV to denote the heat capacity (density), i.e., cV ≡ ∂E/∂T . From eqs. (2.11)

and (2.12), one finds the simple result that for the strongly coupled gauge theory in (p+1)

dimensions

v2
s =

5 − p

9 − p
=

{

1/3 for p = 3 ,

1/5 for p = 4 .
(2.14)

We see above that the conformal result v2
s = 1/p is only achieved for p = 3 [25, 26], as

expected. We note, however, that the p = 1 and 4 backgrounds are related through a simple

chain of dualities to the AdS4 and AdS7 throats of M2- and M5-branes, respectively. Hence

for these specific cases with v2
s = 1/2 and 1/5, the speed of sound reflects the conformal

nature of the holographic theories dual to these M-theory backgrounds [26].
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3. Criticality, scaling, and phase transitions in Dp/Dq systems

We now turn to the systems of interest in this paper: Configurations of probe Dq-branes

in the backgrounds of black Dp-branes. The addition of the probes in the gravitational

description is dual to the addition of matter in the fundamental representation in the

gauge theory [1]. This section is mainly a review of [3] that includes some details that were

omitted in that reference. We describe the embedding of the Dq-brane, study the critical

behaviour and analyse the nature of the phase transition for general p and q. The latter

involves extending the Euclidean techniques of the previous section to the worldvolume

action of the Dq-brane, to study the thermal properties of the fundamental matter. This

discussion naturally leads to sections 4 and 5, where we provide a detailed analysis of the

D3/D7 and D4/D6 brane systems.

3.1 Dp/Dq brane intersections

Consider a configuration of Nc coincident black Dp-branes intersecting Nf coincident Dq-

branes along d spacelike directions. In the limit Nf ≪ Nc the Dq-branes may be treated

as a probe in the Dp-brane geometry (2.1), wrapping an Sn inside the S8−p. We will

assume that the Dq-brane also extends along the radial direction, so that q = d + n + 1.

The corresponding gauge theory now contains fundamental matter propagating along a

(d+1)-dimensional defect. To ensure stability, we will consider Dp/Dq intersections which

are supersymmetric at zero temperature. Generally this means that we are interested in

q = p+4, p+2 or p, as studied in [10, 11]. In this case, the Ramond-Ramond field sourced

by the Dp-branes does not couple to the Dq-brane. For the two cases of special interest

here, the D3/D7 and the D4/D6 systems, one has n = 3 and n = 2 respectively. If the

appropriate direction along the D4-brane is compactified, then both cases can effectively be

thought of as describing the dynamics of a four-dimensional gauge theory with fundamental

matter.

3.2 Critical behaviour

To uncover the critical behaviour of the Dp/Dq brane system, we study the behaviour of

the probe brane near the horizon, following [30] closely — see also [31]. First it is useful

to adapt the S8−p metric in (2.1) to the probe brane embedding, and so we write

dΩ2
8-p = dθ2 + sin2 θ dΩ2

n + cos2 θ dΩ2
7-p-n . (3.1)

As described above, the Dq-brane wraps the internal Sn with radius sin θ in this line

element. Now we zoom in on the near horizon geometry with the coordinates

u = u0 + πTz2 , θ =
y

L

(

L

u0

)
p−3
4

, x̃ =
(u0

L

)
7−p

4
x , (3.2)

with T the temperature defined in (2.6). With these coordinates, the event horizon is at

z = 0. Further y = 0 denotes the axis running orthogonally to the Dq-brane from the

– 7 –
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Dp-branes. Expanding the metric (2.1) to lowest order in z and y gives Rindler space

together with some spectator directions:

ds2 = −(2πT )2z2dt2 + dz2 + dy2 + y2dΩ2
n + dx̃2

d + · · · . (3.3)

The Dq-brane lies at constant values of the omitted coordinates, so these play no role in the

following. The Dq-brane embedding is specified by a curve (z(σ), y(σ)) in the (z, y)-plane.

Since the dilaton approaches a constant near the horizon, up to an overall constant the

Dq-brane (Euclidean) action is simply the volume of the brane, namely

Ibulk ∝
∫

dσ
√

ż2 + ẏ2 zyn , (3.4)

where the dot denotes differentiation with respect to σ and the reason for the subscript

‘bulk’ will become clear shortly. This is precisely the action considered in ref. [30]. In the

gauge z = σ the equation of motion takes the form

zyÿ + (yẏ − nz)(1 + ẏ2) = 0 , (3.5)

while the gauge choice y = σ yields

yzz̈ + (nzż − y)(1 + ż2) = 0 . (3.6)

The two types of embeddings described in the introduction for the full background

extend to this near-horizon geometry (3.3). Hence the solutions again fall into two classes:

‘black hole’ and ‘Minkowski’ embeddings — see figure 1. Black hole embeddings are those

for which the brane falls into the horizon, and may be characterised by y0, the size of the

Sn there, which is also the size of the induced horizon on the Dq-brane worldvolume. The

appropriate boundary condition is ẏ = 0, y = y0 at z = 0. Minkowski embeddings are

those for which the brane closes off smoothly above the horizon. These are characterised

by the distance of closest approach to the horizon, z0, and satisfy the boundary condition

ż = 0, z = z0 at y = 0. There is a simple limiting solution for the equations of motion (3.5):

y =
√

n z. This critical solution just touches the horizon at the point y = z = 0, and so

it lies between the above two classes. Note that this point is a singularity in the induced

metric of the Dq-brane.

The equation of motion (3.5) enjoys a scaling symmetry: If y = f(z) is a solution,

then so is y = f(µz)/µ for any real positive µ. This transformation rescales z0 → z0/µ for

Minkowski embeddings, or y0 → y0/µ for black hole embeddings, which implies that all

solutions of a given type can be generated from any other one by this scaling transformation.

Consider now a solution very close to the critical one, y(z) =
√

nz + ξ(z). Linearising

the equation of motion (3.5), one finds that for large z the solutions are of the form

ξ(z) = zν± , with

ν± = −n

2
±

√

n2 − 4(n + 1)

2
. (3.7)

If n ≤ 4, these exponents have non-vanishing imaginary parts, which leads to oscillatory

behaviour. It appears that one can also get real exponents with n ≥ 5. However, we will

– 8 –
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show below that no such systems are realized in superstring theory. Hence we will only

work with n ≤ 4 in the following. In this case it is convenient to write the general solution

as

y =
√

nz +
T−1

(Tz)
n
2

[

a sin(α log Tz) + b cos(α log Tz)
]

, (3.8)

where α =
√

4(n + 1) − n2/2 and a, b are dimensionless constants determined by z0 or y0.

It is easy to show that under the rescaling discussed above, these constants transform as

(

a

b

)

→ 1

µ
n
2
+1

(

cos(α log µ) sin(α log µ)

− sin(α log µ) cos(α log µ)

)(

a

b

)

. (3.9)

This result implies that the solutions exhibit discrete self-similarity and yields critical

exponents that characterise the near-critical behaviour. We refer the reader to [30, 31] for

details but emphasise that this behaviour depends only on the dimension of the sphere.

Hence it is universal for all Dp/Dq systems (with n ≤ 4).

Each near-horizon solution gives rise to a global solution when extended over the full

spacetime (2.1). Each of these embeddings is characterised two constants, which can be

read off from its asymptotic behaviour and which can be interpreted as the quark mass Mq

and (roughly) the quark condensate 〈ψ̄ψ〉 in the dual field theory — see below. Both of

these quantities are fixed by z0 or y0. As we will see, the values corresponding to the critical

solution, M∗
q and 〈ψ̄ψ〉∗, give a rough estimate of the point at which a phase transition

occurs.

3.2.1 Real scaling exponents?

From eq. (3.7), we see that the exponents will be real if the dimension of the internal

sphere wrapped by the Dq-brane is sufficiently large, i.e., if n ≥ 5. This would be inter-

esting because, whereas the oscillatory behaviour for n ≤ 4 leads to a first order phase

transition, as we show below, real exponents would seem to lead to a second order phase

transition. However, we will now argue that (under the same assumption to guarantee

stability as above) no such analysis can be applied for the Dp/Dq systems that actually

arise in superstring theory.

Choosing a value of n, the dimension of the internal sphere, places restrictions on the

allowed values of both p and q. The internal Sn is a subspace of the spherical part of the

geometry (2.1) and hence we must have p < 8− n. We have taken a strict inequality here,

i.e., we do not consider p = 8 − n, because the size of the n-sphere must vary to have

nontrivial embeddings and so it can not fill the entire internal (8−p)-sphere. Given that

p ≥ 0,4 we need only consider n = 5, 6, 7.

Next, we note that by T-dualising along the p directions common to both sets of branes,

the brane configuration is reduced to a D0/Dq′ intersection, where q′ = n + 1 + (p − d).

Given the previous restriction on n, we must have q′ ≥ 6. Now, if we require as above

that the intersection be supersymmetric at zero temperature (for stability), then we must

have q′ = 8. Hence the only brane configurations of interest are T-dual to the D0/D8

4No black brane geometry exists for a Euclidean D(–1)-brane.
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system. However, these configurations are those in which string creation arises through the

Hanany-Witten effect [32]. In particular, as discussed in [33], the background Ramond-

Ramond field of the Dp-branes will induce a nontrivial worldvolume gauge field on the

Dq-brane. While this does not rule out the possibility of interesting embeddings and a

possible (second order) phase transition, it certainly indicates that the present analysis

(with no worldvolume gauge fields) does not apply to these systems. For this reason, in

the remainder of this paper we will concentrate on Dp/Dq systems with n ≤ 4.

3.3 Phase Transitions

In order to study the global solutions corresponding to the near horizon solutions of the pre-

vious subsection it is convenient to introduce an isotropic, dimensionless radial coordinate

ρ through

(u0ρ)
7−p

2 = u
7−p

2 +

√

u7−p − u7−p
0 . (3.10)

Note that the horizon is at ρ = 1. Following the discussion in the previous subsection,5 we

assume that the Dp/Dq system under consideration is T-dual to the D3/D7 one, in which

case (p − d) + (n + 1) = 4. Then the Euclidean Dq-brane action density of Nf coincident

Dq-branes in the black Dp-brane background is

Ibulk

N =

∫ ∞

ρmin

dρ

(

u

u0ρ

)d−3 (

1 − 1

ρ2(7−p)

)

ρn(1 − χ2)
n−1

2
√

1 − χ2 + ρ2χ̇2 , (3.11)

where χ = cos θ, χ̇ = dχ/dρ and we have introduced the normalisation constant

N =
NfTDqu

n+1
0 Ωn

4T
. (3.12)

Here, TDq = 1/(2πℓs)
qgsℓs is the Dq-brane tension and Ωn is the volume of a unit n-sphere.

Up to a numerical constant of O(1), the normalisation factor is found to be

N ∼ NfNcT
dgeff(T )

2(d−1)
5−p , (3.13)

where geff(T ) is the effective coupling (2.12) and we have used the standard gauge/gravity

relations (2.2) and (2.3).

The equation of motion that follows from (3.11) leads to the large-ρ behaviour6

χ =
m

ρ
+

c

ρn
+ · · · . (3.14)

Holography relates the dimensionless constants m, c to the quark mass and condensate by7

Mq =
u0m

2
9−p

7−p πℓ2
s

∼ geff(T )
2

5−p T m , (3.15)

〈Om〉 = −2πℓ2
s(n − 1)ΩnNfTDqu

n
0c

4
n

7−p

∼ −Nf Nc g
2(d−2)
5−p

eff T d c . (3.16)

5Above, we pointed out that our present analysis does not apply to Dp/Dq systems T-dual to D0/D8-

branes. Systems T-dual to D0/D0 systems would be trivial for the present purposes as n = 0. Hence those

T-dual to the D0/D4 or D3/D7 system are the only other possibility with a supersymmetric limit.
6Here we assume n > 1. Otherwise the term multiplied by c is log ρ/ρ.
7Note that the factor of Nf in the second equation was missing in refs. [3, 34].
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Here Mq is the mass of the fields in the fundamental hypermultiplets, both the fermions ψ

and the scalars q. The operator Om is a supersymmetric version of the quark bilinear, and

it takes the schematic form

Om = ψ̄ψ + q†Φq + Mqq
†q , (3.17)

where Φ is one of the adjoint scalars. We will loosely refer to its expectation value as the

‘quark condensate’. A detailed discussion of this operator, including a precise definition,

can be found in appendix A of ref. [35].

Eq. (3.15) implies the relation m(5−p)/2 = M̄/T between the dimensionless quantity

m, the temperature T and the mass scale

M̄ =
7 − p

2
9−p

7−p πL

(

2πℓ2
sMq

L

)

5−p

2

∼ Mq

geff(Mq)
. (3.18)

Up to numerical factors, this scale is the mass gap in the discrete meson spectrum at

temperatures well below the phase transition [9 – 11, 5]. We shall see below that it is also

the scale of the temperature of the phase transition for the fundamental degrees of freedom,

Tfun ∼ M̄ , since the latter takes place at m ∼ 1.

The key observation [31] is that the values (m, c) of a near-critical solution are linearly

related to the integration constants fixing the corresponding embedding in the near-horizon

region. Combining this with the transformation rule (3.9) for the near-horizon constants

(a, b) and eliminating µ, we deduce that (m − m∗)/z
n
2
+1

0 and (c − c∗)/z
n
2
+1

0 are periodic

functions of (α/2π) log z0 with unit period for Minkowski embeddings, and similarly with

z0 replaced by y0 for black hole embeddings. This is confirmed by our numerical results,

which will be discussed in the next sections and are illustrated for the D3/D7 brane system

in figure 3.

The oscillatory behaviour of m and c as functions of z0 or y0 implies that for a fixed

value of m near the critical value, several consistent Dq-brane embeddings are possibile

with different values of c. Alternatively, one finds the quark condensate is not a single-

valued function of the quark mass. Physically, the preferred solution will be the one that

minimises the free energy density of the Dq-brane, F = TIDq. As with the bulk action,

the Dq-action (3.11) contains large-radius divergences, as can be seen by substituting the

asymptotic behaviour (3.14) in eq. (3.11). It therefore needs to be regularised and renor-

malised. We can achieve the former by replacing the upper limit of integration by a finite

ultraviolet cut-off ρmax. Then in analogy to the holographic renormalisation of the super-

gravity action [21, 22], boundary ‘counter-terms’ Ibound are added to the brane action Ibulk,

such that the renormalised brane energy IDq = Ibulk + Ibound is then finite as the cut-off is

removed, ρmax → ∞ [36]. The latter method applies directly to asymptotic AdS geometries,

but it can be easily extended to the D4/D6 system, as discussed below. We expect that a

similar procedure can be developed for any Dp/Dq system for which there is a consistent

gauge/gravity duality. (In any event, the brane action can also be regulated by subtract-

ing the free energy of a fiducial embedding.) The details for the D3/D7 and D4/D6 cases

are discussed in the following sections and the results are presented in figures 5 and 12,
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respectively. In both cases, we see that as the temperature is increased, a first order phase

transition occurs by discontinuously jumping from a Minkowski embedding (point A) to

a black hole embedding (point B). We emphasise again that this first order transition is

a direct consequence of the multi-valued nature of the physical quantities brought on by

the critical behaviour described in the previous section. It may be possible to access this

self-similar region by super-cooling the system (although most of the other solutions in this

region are dynamically unstable — see below).

It is interesting to ask if the strong coupling results obtained here could in principle

be compared with a weak coupling calculation. It follows from our analysis that the free

energy density takes the form F = NTf(m2), where the function f can only depend on

even powers of m because of the reflection symmetry χ → −χ. The limit m → 0 may

be equivalently regarded as a zero quark mass limit or as a high-temperature limit. In

this limit the brane lies near the equatorial embedding χ = 0, which slices the horizon in

two equal parts. In general f(0) is a non-zero numerical constant; in the D3/D7 case, for

example, a straightforward calculation yields f(0) = −1/2. Given eq. (3.13), we have that

at strong coupling the free energy density scales as

F ∼ Nf Nc T d+1 geff(T )
2(d−1)
5−p . (3.19)

The temperature dependence is that expected on dimensional grounds for a d-dimensional

defect, and the NfNc dependence follows from large-N counting rules. However, the depen-

dence on the effective ’t Hooft coupling indicates that this contribution comes as a strong

coupling effect, without direct comparison to any weak coupling result. The same is true for

other thermodynamic quantities such as, for example, the entropy density S = −∂F/∂T .

We remind the reader that the background geometry makes the leading contribution to the

free energy density (2.11), which corresponds to that coming from the gluons and adjoint

matter. Recall that only for p = 3 is the effective coupling factor absent in eq. (2.11). Only

in this case the string coupling result differs from that at weak coupling by a mere numeri-

cal factor of 3/4 [24]. For the fundamental matter, a similar circumstance arises for d = 1,

as would be realized with the D1/D5, D2/D4 or D3/D3 systems. In these special cases,

the strong and weak coupling calculations for the fundamental matter could in principle be

compared. Hence the D3/D3 system is singled out since such a comparison can be made

for both the adjoint and fundamental sectors.

4. The D3/D7 system

Here we will specialise the above discussion to the D3/D7 system. This intersection is

summarised by the array

0 1 2 3 4 5 6 7 8 9

D3: × × × ×
D7: × × × × × × × ×

(4.1)

Of course, this is an interesting system because both the gluons and the fundamental fields

in the gauge theory propagate in 3 + 1 dimensions.
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4.1 D7-brane embeddings

In the D3/D7 brane system with the radial coordinate defined in (3.10),

(u0ρ)2 = u2 +
√

u4 − u4
0 , (4.2)

the background metric (2.1) becomes

ds2 =
1

2

(u0ρ

L

)2
[

−f2

f̃
dt2 + f̃ dx2

3

]

+
L2

ρ2

[

dρ2 + ρ2dΩ2
5

]

, (4.3)

where

f(ρ) = 1 − 1

ρ4
, f̃(ρ) = 1 +

1

ρ4
. (4.4)

The coordinates {t, xi} parametrise the intersection, while {ρ,Ω5} are spherical coordinates

on the 456789-directions transverse to the D3-branes. As in eq. (3.1), it is useful to adapt

the metric on the five-sphere to the D7-brane embedding. Since the D7-brane spans the

4567-directions, we introduce spherical coordinates {r,Ω3} in this space and {R,φ} in the

89-directions. Denoting by θ the angle between these two spaces we then have:

ρ2 = r2 + R2 , r = ρ sin θ , R = ρ cos θ , (4.5)

and

dρ2 + ρ2dΩ2
5 = dρ2 + ρ2

(

dθ2 + sin2 θ dΩ2
3 + cos2 θ dφ2

)

(4.6)

= dr2 + r2dΩ2
3 + dR2 + R2dφ2 . (4.7)

Describing the profile in terms of χ(ρ) = cos θ(ρ) simplifies the analysis — note that

χ = R/ρ. With this coordinate choice, the induced metric on the D7-brane becomes

ds2 =
1

2

(u0ρ

L

)2
[

−f2

f̃
dt2 + f̃dx2

3

]

+

(

L2

ρ2
+

L2χ̇2

1 − χ2

)

dρ2 + L2(1 − χ2) dΩ2
3 , (4.8)

where, as above, χ̇ = dχ/dρ. Since we are studying static embeddings of the probe brane,

the equation of motion for χ(ρ) can be derived equally well from the Lorentzian or Euclidean

action. Here we proceed directly to the latter because it is relevant for the thermodynamic

calculations in the following. The Euclidean D7-brane action density is

Ibulk

N =

∫

dρ

(

1 − 1

ρ8

)

ρ3(1 − χ2)
√

1 − χ2 + ρ2χ̇2 , (4.9)

where

N =
2π2NfTD7u

4
0

4T
=

λNfNc

32
T 3 (4.10)

is the normalisation constant defined in (3.12). Recall from footnote 3 that Ibulk denotes

a density because we have divided out the volume Vx. The equation of motion for χ(ρ) is

then

∂ρ

[

(

1 − 1

ρ8

)

ρ5(1 − χ2)χ̇
√

1 − χ2 + ρ2χ̇2

]

+ ρ3

(

1 − 1

ρ8

)

3χ(1 − χ2) + 2ρ2χχ̇2

√

1 − χ2 + ρ2χ̇2
= 0 , (4.11)

– 13 –



J
H
E
P
0
5
(
2
0
0
7
)
0
6
7

0.5 1 1.5 2 2.5 3

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Minkowski embedding

Black hole embedding

Critical embedding

Figure 2: Profiles various D7-brane embeddings in a D3-brane background in the (R, r)-plane.

The circle represents the horizon at ρ = 1.

which implies that the field χ asymptotically approaches zero as

χ =
m

ρ
+

c

ρ3
+ · · · . (4.12)

The dimensionless constants m and c are related to the quark mass and condensate through

eqs. (3.15) and (3.16) with p = 3 and n = 3:

Mq =
u0m

23/2πℓ2
s

=
1

2

√
λT m , (4.13)

〈Om〉 = −23/2π3ℓ2
sNfTD7u

3
0 c = −1

8

√
λ Nf Nc T 3 c . (4.14)

In this case m = M̄/T and eq. (3.18) takes the form

M̄ =

√
2(2πℓ2

sMq)

πL2
=

2Mq√
λ

=
Mgap

2π
, (4.15)

where λ = g2
YMNc = 2πgsNc is the ’t Hooft coupling. In the last equality, we are relating

M̄ to the meson mass gap in the D3/D7 theory at zero temperature [9].

The equation of motion (4.11) can be recast in terms of the R and r coordinates,

related to the ρ and θ coordinates via (4.5):

∂r

[

r3

(

1 − 1

(r2 + R2)4

)

∂rR
√

1 + (∂rR)2

]

= 8
r3R

(r2 + R2)5

√

1 + (∂rR)2 , (4.16)

where the embedding of the D7-brane is now specified by R = R(r). Asymptotically,

R(r) = m +
c

r2
+ · · · . (4.17)

In the limits of large and small m we were able to find approximate analytic solutions

for the embeddings — see discussion below and appendix A. However, for arbitrary m
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we were unable to find an analytic solution of eq. (4.11) or (4.16) and so we resorted to

solving these equations numerically. It was simplest to solve for Minkowski embeddings

using the (R, r) coordinates with equation of motion (4.16) while the (χ, ρ) coordinates

were best suited to the black hole embeddings. Our approach was to specify the boundary

conditions at a minimum radius and then numerically integrate outward. For the black

hole embeddings, the following boundary conditions were specified at the horizon ρmin = 1:

χ = χ0 and dχ/dρ = 0 for 0 ≤ χ0 < 1. For Minkowski embeddings, the following boundary

conditions were specified at rmin = 0 (i.e., at the axis χ = 1): R = R0 and ∂rR = 0 for

R0 > 1. In order to compute the constants m, c corresponding to each choice of boundary

conditions at the horizon, we fitted the solutions to the asymptotic form (4.12) for χ(ρ)

or (4.17) for R(r). A few characteristic profiles are shown in figure 2.

Recall that, as elucidated in section 3.2, the black hole and Minkowski embeddings are

separated by a critical solution which just touches the horizon. This critical embedding

is characterised by certain critical values of the integration constants, m∗ and c∗. For

Minkowski embeddings near the critical solution, figure 3 shows plots of (m − m∗)/(R0 −
1)5/2 and (c− c∗)/(R0 − 1)5/2 versus

√
7 log(R0 − 1)/4π. In this regime, we may relate the

boundary value to that in the near horizon analysis with R0 − 1 ≃ z0. Here our numerical

results confirm that, near the critical solution, (m − m∗)/z
5/2
0 and (c − c∗)/z

5/2
0 are both

periodic functions of
√

7 log(z0)/4π with unit period, as discussed above in section 3.2. This

oscillatory behaviour of m and c as functions of z0 (or y0) implies that the quark condensate

is not a single-valued function of the quark mass and this is clearly visible in our plots of

c versus T/M̄ = 1/m, displayed in figure 4. By increasing the resolution in these plots,

we are able to follow the two families of embeddings spiralling in on the critical solution,

the behaviour predicted by the near-horizon analysis. Thermodynamic considerations will

resolve the observed multi-valuedness by determining the physical solution as that which

minimizes the free energy density of the D7-branes. As discussed in section 3.3, since the

physical parameters are multi-valued, we can anticipate that there will be a first order phase

transition when the physical embedding moves from the Minkowski branch to the black

hole branch. We will proceed to computing the free energy density in the next subsection.

The position of the resulting phase transition is indicated in the second plot of figure 4.

4.2 D7-brane thermodynamics

Having discussed the embeddings of the D7-brane in the black D3-brane geometry, we

proceed to compute the free energy, entropy and energy densities associated with the D7-

brane, or equivalently, the fundamental fields. We start with the Euclidean D7-brane

action (4.9). Using the asymptotic behaviour (4.12), we see that the action contains a UV

divergence, since
Ibulk

N ≃
∫ ρmax

ρmin

dρ ρ3 ≃ 1

4
ρmax

4 (4.18)

diverges as the regulator is removed, i.e., ρmax → ∞.

This kind of problem is well-known in the context of the AdS/CFT correspondence

and was first resolved for the gravity action by introducing boundary counter-terms, which

depend only on the intrinsic geometry of the boundary metric [21, 22]. These ideas can
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Figure 3: Quark mass (a) and condensate (b) as a function of the distance to the horizon R0−1 for

D7-brane Minkowski embeddings in a D3-brane background. Note that near the horizon R0−1 ∼ z0.
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Figure 4: Quark condensate c for a D7 in a D3 background versus T/M̄ . The blue dashed (red

continuous) curves correspond to the Minkowski (black hole) embeddings. The dotted vertical line

indicates the precise temperature of the phase transition.

be generalized to other fields in an AdS background, such as a scalar [37] — for a review,

see [38]. The latter formed the basis for the renormalization of probe brane actions in [36],

where the brane position or profile is treated as a scalar field in an asymptotically AdS

geometry. That is, one implicitly performs a Kaluza-Klein reduction of the D7 action to

five dimensions so that it appears to be a complicated nonlinear action for a scalar field

χ propagating in a five-dimensional (asymptotically) AdS geometry. One then introduces

boundary counter-terms which are local functionals (polynomials) of the scalar field (and
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boundary geometry) on an asymptotic regulator surface. These terms are designed to

remove the bulk action divergences that arise as the regulator surface is taken off to infinity,

as in eq. (4.18). The D3/D7 system is explicitly considered in ref. [36], which also introduces

a finite counterterm that ensures that the brane action vanishes for the supersymmetric

embedding of a D7-brane in an extremal D3-background, i.e., eq. (2.1) with u0 = 0 and

p = 3. In the calculation of [36] the D7-brane embedding is specified as θ(ρ), but this

is easily converted to a counter-term action for χ(ρ) using the obvious coordinate/field

redefinition: π
2 − θ = arcsin χ ≃ χ + 1/6χ3 + · · · . The final result is

Ibound

N = −L4T

u4
0

∫

dtEd3x
√

det γ
(

1 − 2χ2 + χ4
)

, (4.19)

where this boundary action is evaluated on the asymptotic regulator surface ρ = ρmax

introduced above. The boundary metric γ at ρ = ρmax in the (effective) five-dimensional

geometry is given by

ds2(γ) =
1

2

(u0ρmax

L

)2
(

f(ρmax)
2

f̃(ρmax)
dt2E + f̃(ρmax)dx 2

3

)

(4.20)

and so
√

γ = u4
0ρmax

4f(ρmax)f̃(ρmax)/4L
4. Evaluating the counter-term action (4.19) with

an asymptotic profile as in eq. (3.14), one finds

Ibound

N = −1

4

[

(ρmax
2 − m2)2 − 4mc

]

. (4.21)

Here we have divided out the volume factor Vx — see footnote 3. Comparing eqs. (4.18)

and (4.21), one sees that the leading divergence proportional to ρ4
max cancels in the sum

of ID7 = Ibulk + Ibound. As a further check, one can consider the supersymmetric limit

u0 → 0, in which one must work with a rescaled coordinate ρ̃ = u0ρ, since the change of

variables (4.2) is not well defined at u0 = 0. In this limit χ = u0m/ρ̃ =
√

2 2πℓ2
sMq/ρ̃ is an

exact solution, and one can easily verify that for this configuration ID7 = Ibulk + Ibound = 0.

In order to produce a finite integral which is more easily evaluated numerically, it is

useful to incorporate the divergent terms in the boundary action (4.21) into the integral in

eq. (4.9) using

ρmax
4 =

∫ ρmax

ρmin

dρ 4ρ3 + ρmin
4 ,

ρmax
2 =

∫ ρmax

ρmin

dρ 2ρ + ρmin
2 . (4.22)

Then the total action may be written as

ID7

N = G(m) − 1

4

[

(ρmin
2 − m2)2 − 4mc

]

, (4.23)

where G(m) is defined as

G(m) =

∫ ∞

ρmin

dρ

[

ρ3

(

1 − 1

ρ8

)

(

1 − χ2
) (

1 − χ2 + ρ2 χ̇2
)1/2 − ρ3 + m2ρ

]

. (4.24)
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Note that the upper bound for the range of integration has been set to infinity, since the

integral above is finite.

From these expressions, the free energy density is given by F = TID7. Now using our

numerical results, the free energy density is shown as a function of the temperature in the

first two plots in figure 5. The second of these shows the classic ‘swallow tail’ form, typically

associated with a first order phase transition. To our best numerical accuracy, the phase

transition takes place at Tfun/M̄ = 0.7658 (or m = 1.306), where the free energy curves

for the Minkowski and black hole phases cross. The fact that the transition is first order

is illustrated by figure 4, which shows that the quark condensate makes a finite jump at

this temperature between the points labelled A and B. Similar discontinuities also appear

in other physical quantities, like the entropy and energy density, as we now calculate.

Given the free energy density, a standard identity (2.7) yields the entropy density as

S = −∂F

∂T
= −πL2 ∂F

∂u0
, (4.25)

where we have used the expression u0 = πL2T from eq. (2.6). Evaluating this expression

requires a straightforward but somewhat lengthy calculation, which we have relegated to

appendix B. The final result is

S

N = −4G(m) + (ρmin
2 − m2)2 − 6mc . (4.26)

Comparing eqs. (4.23) and (4.26), we see that the entropy and free energy densities are

simply related as

S = −4F

T

(

1 +
2N mc

4F/T

)

. (4.27)

The first term above can be recognized as the behaviour expected for a conformal system,

i.e., a system for which F ∝ T 4. Hence the second term can be interpreted as summarising

the deviation from conformal behaviour. We note that, as illustrated in figure 4, c vanishes

in both the limits T → 0 and T → ∞ and so the deviation from conformality is reduced

there. More precisely, using the results from appendix A we see that c ∼ m at high

temperature and c ∼ 1/m5 at low temperature. Together with (4.10) this implies that

the deviation from conformality scales as M̄2/T 2 at high temperature. Conformality is

also restored at low temperatures but only because both S and F/T approach zero more

quickly than T 3. That is, S ∼ T 7/M̄4 as T → 0.

Finally, the thermodynamic identity E = F + TS = T (ID7 + S) gives the contribution

of the D7-brane to the energy density:

E

NT
= −3G(m) +

3

4

[

(ρmin
2 − m2)2 − 20

3
mc

]

. (4.28)

We evaluated both the expressions (4.26) and (4.28) numerically and plotted S and E in

figure 5. In both cases, the phase transition is characterised by a finite jump in these

quantities, as illustrated by the second plot in each case. However, these plots also show

that there is a large rise in, say, the entropy density in the vicinity of Tfun and that the jump

associated with the phase transition only accounts for roughly 3% of this total increase.
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We close with a few observations about these results. First, recall from (4.10) that

N ∼ λNcNfT
3 so that the leading contribution of the D7-branes to all the various ther-

modynamic quantities will be order λNcNf, in comparison to N2
c for the usual bulk grav-

itational contributions. As noted in [3, 34], the factor of λ represents a strong coupling

enhancement over the contribution over a simple free-field estimate for the NcNf funda-

mental degrees of freedom. We return to this point below in section 6.

Next, note that in order for the entropy S = −∂F/∂T to be positive, the free energy

F , or equivalently the action ID7, must always be a decreasing function of the temperature.

This means that the apparent ‘kinks’ in the plot of these quantities versus the temperature

are true mathematical kinks and not just very rapid turn overs. An analytic proof of this

fact is given in appendix C.

Finally, from the plots of the energy density one can immediately read off the qual-

itative behaviour of the specific heat cV = ∂E/∂T . In particular, note that this slope

must become negative as the curves spiral around near the critical solution. Hence the

corresponding embeddings are thermodynamically unstable. Examining the fluctuation

spectrum of the branes, we will show that a corresponding dynamical instability sets in

at precisely the same points. One may have thought that these phases near the critical

point could be accessed by ‘super-cooling’ the system but this instability severely limits

the embeddings which can be reached with such a process.

4.2.1 Thermodynamic expressions for large T/M̄

With precisely m = 0, χ(ρ) = 0 is an exact solution. We denote this solution as the

equatorial embedding, since the D7-brane remains at the maximal S3 for all values of ρ.

This embedding describes the infinite-temperature limit for massive quarks (or massless

quarks for any temperature), i.e., T/M̄ → ∞. For T/M̄ ≫ 1 or m ≪ 1, approximate

analytic solutions for the D7-brane profile can be found by perturbing around the equatorial

embedding, as discussed in appendix A. The final result is given in eq. (A.4). In the

notation of the appendix, the integral (4.24) can be expressed as

G(m) =

∫ ∞

1

dx

2

[

x

(

1 − 1

x4

)(

1 − 3

2
m2χ̃2 + 2x2 (∂xmχ̃)2

)

− x + m2

]

= −1

4
+ m2G2

where we have introduced

G2 ≡
∫ ∞

1

dx

2

[

x

(

1 − 1

x4

)(

−3

2
χ̃2 + 2x2 (∂xχ̃)2

)

+ 1

]

≃ 0.413893 . (4.29)

We were only able to evaluate this integral numerically.

We are now in a position to evaluate the various thermal quantities given by
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Figure 5: Free-energy, entropy and energy densities for a D7-brane in a D3-brane background; note

that N ∝ T 3. The blue dashed (red continuous) curves correspond to the Minkowski (black hole)

embeddings. The dotted vertical line indicates the precise temperature of the phase transition.

eqs. (4.23), (4.26) and (4.28) in this limit. We find

ID7

N ≃ −1

2
+

(

G2 + c̃ +
1

2

)(

M̄

T

)2

− 1

4

(

M̄

T

)4

+ · · · ,

S

N ≃ 2 + (−4G2 − 6c̃ − 2)

(

M̄

T

)2

+

(

M̄

T

)4

+ · · · ,

E

NT
≃ 3

2
+

(

−3G2 − 5c̃ − 3

2

)(

M̄

T

)2

+
3

4

(

M̄

T

)4

+ · · · ,

using ρmin = 1 for black hole embeddings and c̃ ≃ −0.456947 from eq. (A.7). In this high

temperature limit, the quark mass is negligible and so the first term in these expressions

could be characterised as conformal behaviour. The remaining contributions are small

corrections indicating a deviation from this simple behaviour generated by the finite quark
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mass. This is essentially the form expected in the high T limit in finite temperature field

theory — for example, see [39] and the references therein.

4.2.2 Thermodynamic expressions for small T/M̄

Turning to the opposite, low-temperature limit, i.e., T/M̄ ≪ 1, the D7-branes lie on flat

embeddings far from the event horizon, i.e., χ ≃ R0/ρ to leading order. One can calculate

perturbative improvements to this simple embedding — see appendix A — but it suffices

to determine the leading thermodynamic behaviour. We find that

G(m) =

∫ ∞

0
dr

[

r3

(

1 − 1

ρ8

)
√

1 + (∂rR)2 + (r + R ∂rR)(m2 − ρ2)

]

≃ 1

12

1

m4
. (4.30)

Then using R0 ≃ m and c ≃ −1/6m5, the thermal densities become

ID7

N ≃ − 1

12

(

T

M̄

)4

,
S

N ≃ 2

3

(

T

M̄

)4

,
E

NT
≃ 7

12

(

T

M̄

)4

. (4.31)

Hence these contributions are going rapidly to zero. Note that they still contain the same

normalization constant (4.10) and so these densities are still proportional to λNfNc. At low

temperature, one might have expected that the thermodynamics of the fundamental matter

is dominated by the low lying-mesons, i.e., the lowest energy excitations in the fundamental

sector, and so that the leading contributions are proportional to N2
f , reflecting the number

of mesonic degrees of freedom. Such contributions to the thermal densities will arise in the

gravity path integral in evaluating the fluctuation determinant on the D7-brane around the

classical saddle-point. As indicated by the Nc and λ factors, the leading low-temperature

contributions above come from the interaction of the (deconfined) adjoint fields and the

fundamental matter.

4.2.3 Speed of sound

As mentioned in section 2.2, the speed of sound is another interesting probe of the decon-

fined phase of the strongly coupled gauge theories. In this section, we calculate the effect

of fundamental matter on the speed of sound. From eq. (2.13), we must evaluate the D7-

branes contribution to the total entropy density and the specific heat. The first is already

given by eq. (4.26) and we denote this contribution as S7 in the following. From eq. (4.28),

the energy density can be written as E = −3F − 2NTmc. Then recalling N ∝ T 3 from

eq. (4.10), the D7-brane contribution to the specific heat can be written as

cV7 =
∂E

∂T
= 3S7 − α

∂

∂T
(T 4 mc) , (4.32)

where we have introduced the dimensionless constant α ≡ λNfNc/16. From the black D3

background, the free energy of the adjoint fields is given in eq. (2.8). It follows then that

the adjoint contributions to the entropy and specific heat are:

S3 = −π2

2
N2

c T 3 , cV3 = 3S3 . (4.33)
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Combining all of these results, we can now calculate the speed of sound

v2
s =

S

cV

=
S3 + S7

cV3 + cV7

=
S3 + S7

3S3 + 3S7 − α∂T (T 4 mc)

≃ 1

3

[

1 +
α

3S3
∂T

(

T 4 mc
)

]

. (4.34)

Note all of our brane calculations are to first-order in an expansion in Nf/Nc and hence we

have applied the Taylor expansion in the last line above, reflecting this perturbative frame-

work e.g., cV7/cV3 ≪ 1. Now using various expressions above, as well as m = 2Mq/
√

λT

and ε ≡ λ
2π

Nf
Nc

, we may write the final result as

δv2
s ≡ v2

s − 1

3
≃ ε

12π

(

mc +
1

3
mT

∂c

∂T

)

. (4.35)

This expression indicates that the D7-brane produces a small deviation away from the

conformal result, v2
s = 1

3 .

The result of numerically evaluating δv2
s as a function of the temperature is given

in figure 6. We see that δv2
s is negative. That is, the fundamental matter reduces the

speed of sound. Following the discussion below eq. (4.27) one finds that δv2
s ∼ T 4/M̄4

at low temperature and δv2
s ∼ M̄2/T 2 at high temperature. Thus we see again that the

deviation from conformal behaviour vanishes for large and small T . We also note that

δv2
s is largest near the phase transition, where it makes a discrete jump. Since we are

working in a perturbative framework, eq. (4.35) is only valid when this deviation is a small

perturbation. By assumption ε ∝ Nf/Nc ≪ 1 and so this is guaranteed provided the last

factor in (4.35) is not large. This is indeed satisfied for the thermodynamically favoured

embeddings, as illustrated in figure 6. Similar deviations have been investigated in [28] for

other gauge/gravity dualities.

In figure 6, we have also continued δv2
s on the disfavoured embeddings beyond the phase

transition and we see that it diverges (towards −∞) at precisely the points where, e.g., the

energy density curve turns around — see figure 5. That is, cV7 diverges at these points,

so that the perturbative derivation of eq. (4.35) breaks down. Hence our perturbative

framework does not allow us to investigate interesting effects, as seen in [29].

We see from eq. (4.35) that, for massive quarks, the deviation from the conformal

result is proportional to Nf/Nc, as expected from large-Nc counting rules. However, if

Mq = 0 then the result above vanishes, and so δv2
s = O(N2

f /N2
c ) at least. Presumably,

this additional suppression is due to the fact that for massive quarks conformal invariance

is broken explicitly at the classical level, whereas if Mq = 0 it is broken only at the

quantum mechanical level by the non-vanishing beta function of the theory in the presence

of fundamental matter. This is proportional to Nf/Nc, leading to an additional suppression.

In the gravitational description this is most easily understood at zero temperature. In this

case the D3-brane background is exactly AdS5 × S5, and the isometries of the first factor

correspond to the conformal group in four dimensions. Adding D7-brane probes with non-

zero quark mass breaks the conformal isometries, and hence this effect is visible at order
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Figure 6: The deviation of the speed of sound from the conformal value. (a) In the limits T → 0

and T → ∞, δv2

s
→ 0. (b) The temperature of the phase transition is marked by the dashed

vertical line. Note there is a finite discontinuity in the speed of sound at the phase transition. If we

follow the black hole branch (red line) or the Minkowski branch (dotted blue line) past the phase

transition, we find that δv2

s
diverges.

Nf/Nc. Instead, if Mq = 0 then the branes’ worldvolume is AdS5 × S3, which preserves all

the AdS isometries. Hence in this case one must go beyond the probe approximation to

see the breaking of conformal invariance, i.e., beyond O(Nf/Nc).

4.3 Meson spectrum

As discussed earlier, introducing the D7-brane probes into the black D3-brane geometry

corresponds to adding dynamical quarks into the gauge theory. The resulting theory has

a rich spectrum of mesons, i.e., quark-antiquark bound states. Since the mesons are dual

to open strings with both ends on the D7-brane, the mesonic spectrum can be found

by computing the spectrum of D7-brane fluctuations. For temperatures below the phase

transition, T < Tfun, corresponding to Minkowski embeddings of the D7-branes, we expect

the spectrum to exhibit a mass gap and be discrete, just as found at T = 0 [9 – 11];

this is confirmed by our calculations below — similar calculations have also appeared

recently in [12]. For temperatures above the phase transition, corresponding to black hole

embeddings, the spectrum will be continuous and gapless. Excitations of the fundamental

fields in this phase are however characterised by a discrete spectrum of quasinormal modes,

in analogy with [40]. Investigations of the black hole phase appear elsewhere [12, 13].

4.3.1 Mesons on Minkowski embeddings

In this section we compute the spectrum of low-lying mesons corresponding to fluctuations

of the D7-brane in the black D3-brane geometry (4.3). The full meson spectrum would

include scalar, vector and spinor modes. For simplicity, we will only focus on scalar modes

corresponding to geometric fluctuations of the brane about the embeddings determined in

section 4.1. We will work with the (R, r) coordinates introduced in eq. (4.5), in which

case the background embedding is given by R = Rv(r), φ = 0, where the subscript v

now indicates that this is the ‘vacuum’ solution. Explicitly, we consider small fluctuations
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δR, δφ about the background embedding:

R = Rv(r) + δR , φ = 0 + δφ. (4.36)

The pullback of the bulk metric (4.3) to this embedding is

ds2 =
1

2

(u0ρ

L

)2
[

−f2

f̃
dt2 + f̃dx2

3

]

+
L2

ρ2

[

(1 + Ṙ2
v)dr2 + r2dΩ2

3 + 2(∂aδR)Ṙvdxadr
]

+
L2

ρ2

[

(∂aδR)(∂bδR)dxadxb + (Rv + δR)2(∂aδφ)(∂bδφ)dxadxb
]

,

where the indices a, b run over all D7 worldvolume directions. Using the DBI action, the

D7-brane Lagrangian density to quadratic order in the fluctuations is

L = L0 − TD7

u4
0

4
r3
√

h

√

1 + Ṙ2
v

{

1

2

L2

ρ2
v

(

1 − 1

ρ8
v

)

∑

a

gaa

(

(∂aδR)2

1 + Ṙ2
v

+ R2
v(∂aδφ)2

)

+
4RvṘv∂r(δR)2

ρ10
v (1 + Ṙ2

v)
+

4(δR)2

ρ10
v

− 40R2
v(δR)2

ρ12
v

}

, (4.37)

where L0 is the Lagrangian density for the vacuum embedding:

L0 = −TD7

u4
0

4
r3
√

h

√

1 + Ṙ2
v

(

1 − 1

ρ8
v

)

. (4.38)

Here ρ2
v = r2 + R2

v and h is the determinant of the metric on the S3 of unit radius.

The metric gab in the first line of (4.37) is the induced metric on the D7-brane with the

fluctuations set to zero:

ds2(g) =
1

2

(u0ρv

L

)2
[

−f2

f̃
dt2 + f̃dx2

3

]

+
L2

ρ2
v

[

(1 + Ṙ2
v)dr2 + r2dΩ2

3

]

. (4.39)

Note that integration by parts and the equation of motion for Rv allowed terms linear in

δR to be eliminated from the Lagrangian density. The linearised equation of motion is

∂a





L2r3f f̃
√

h

ρ2
v

√

1+Ṙ2
v

gaa∂a(δR)



 = 8
√

h





r3

ρ10
v

√

1+Ṙ2
v

(

1− 10R2
v

ρ2
v

)

−∂r





r3RvṘv

ρ10
v

√

1+Ṙ2
v







 δR

for δR and

∂a

[

r3f f̃
√

hR2
v

√

1 + Ṙ2
v

L2

ρ2
v

gaa∂a(δφ)

]

= 0 (4.40)

for δφ. Summation over the repeated index a is implied.

We proceed by separation of variables, taking

δφ = P(r)Yℓ3(S3) e−iωteik·x , δR = R(r)Yℓ3(S3) e−iωteik·x , (4.41)

where Yℓ3(S3) are spherical harmonics on the S3, satisfying ∇2
S3Yℓ3 = −ℓ3(ℓ3 + 2)Yℓ3 .

The equation of motion for the angular fluctuations becomes

∂r





r3f f̃R2
v

√

1 + Ṙ2
v

∂rP



 + r3fR2
v

√

1 + Ṙ2
v

[

2

ρ4
v

(

f̃2

f2
ω̃2 − k̃2

)

− ℓ3(ℓ3 + 2)

r2
f̃

]

P = 0 , (4.42)
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while for the radial fluctuations we have:

∂r

[

r3f f̃

(1 + Ṙ2
v)

3/2
∂rR

]

+
r3f

√

1 + Ṙ2
v

[

2

ρ4
v

(

f̃2

f2
ω̃2 − k̃2

)

− ℓ3(ℓ3 + 2)

r2
f̃

]

R

= 8





r3

ρ10
v

√

1 + Ṙ2
v

(

1 − 10R2
v

ρ2
v

)

− ∂r





r3RvṘv

ρ10
v

√

1 + Ṙ2
v







R.

In these equations, ω̃ and k̃ are dimensionless and are related to their dimensionful coun-

terparts via

ω2 = ω̃2 u2
0

L4
= ω̃2π2T 2 = ω̃2 π2M̄2

m2
, (4.43)

and analogously for k.

We solve these equations using the shooting method. For each choice of the three-

momentum k̃, the angular momentum ℓ3, and the embedding Rv(r) (corresponding to one

value of quark mass and chiral condensate) we solve these equations numerically, requiring

that with rmin → 0, P(rmin) = rℓ3
min and ∂rP(rmin) = ℓ3r

ℓ3−1
min for the δφ fluctuations and

R(rmin) = rℓ3
min and ∂rR(rmin) = ℓ3r

ℓ3−1
min for δR. Then, as P(r) ∼ Arℓ3 + Br−ℓ3−2 and

R(r) ∼ Crℓ3 + Dr−ℓ3−2 for some constants A,B,C,D as r → ∞, we tune ω̃2 to find

solutions which behave as r−ℓ3−2 asymptotically.

At finite temperature, the system is no longer Lorentz invariant and so one must

consider the precise definition for the meson masses. We define the ‘rest mass’ of the

mesons as the energy ω with vanishing three-momentum k in the rest-frame of the plasma.8

Thus, solving the equations of motion (4.42) and (4.43) with k̃ = 0 yields the dimensionless

constants ω̃2, which then give the rest masses through (4.43).

Plots of the mass spectrum for these modes are given in figures 7 and 8. Note that in the

zero-temperature limit, the δR and δφ spectra coincide with those previously calculated for

the supersymmetric D3 background [9 – 11]. In particular, using (4.15), the lightest meson

in both spectra has a mass squared matching M2
gap = 4π2M̄2 ≃ 39.5 M̄2. The degeneracy

between the two different modes arises because supersymmetry is restored at T = 0 and

both types of fluctuations are part of the same supermultiplet [9 – 11]. At finite T , this

degeneracy between δR and δφ modes is broken. For example, at the phase transition, the

mass of the lightest meson is roughly 25% and 50% of its zero-temperature value in the δR

and δφ spectra, respectively. The supersymmetric spectrum also showed an unexpected

degeneracy in that it only depended on the combination n + ℓ3, where n and ℓ3 are the

radial and angular quantum numbers characterising the individual excitations [9]. Figure 8

illustrates that this degeneracy is broken at finite temperature, where the masses are shown

for all the modes with n + ℓ3 = 1 and 2. However, this breaking is not large except near

the phase transition.

Both figures show that in general the meson masses decrease as the temperature in-

creases. As noted above, the thermal shift of the meson rest mass may be of the order of

8Note that this definition differs from [4, 6] which choose M2 = −k
2 with ω = 0. The latter might

better be interpreted as the low-lying masses of a confining theory in 2+1 dimensions, in analogy to, e.g.,

[2, 41].
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Figure 7: Mass spectrum M2 = ω2|k=0 for the δφ fluctuations for Minkowski embeddings in the

D3/D7 system.

25 to 50 percent at the phase transition. This reduction must reflect in part the decrease

in the constituent quark mass, discussed in appendix D. However, the lowering of the

meson masses is actually small relative to that seen for the constituent quark mass. As

seen in figure 16, at the phase transition, the latter has fallen to only 2% of its T = 0 value.

However, the thermal shift of the mesons becomes even more dramatic near the critical

solution. In particular, embeddings with R0 ∈ (1, 1.07) possess tachyonic δR fluctuations.

Note that R0 = 1 corresponds to the critical solutions and the phase transition occurs at

R0 ≃ 1.15, i.e., this is the minimum value of R0 for which the thermodynamically preferred

embedding is of Minkowski type. As discussed above, the embeddings are not unique in

the vicinity of the critical solution and so physical quantities spiral in on their critical

values. As observed at the end of section 4.2, the spiralling of the energy density leads to

a negative specific heat and indicates an instability. It is satisfying to note in the second

plot of figure 8 that the lowest-lying δR-mode becomes tachyonic at precisely the point

where the first turn-around in the spiral occurs (with T ). Hence a dynamical instability

is appearing in the Minkowski embeddings, in precise agreement with the thermodynamic
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Figure 8: Mass spectrum M2 = ω2|k=0 for the δR fluctuations for Minkowski embeddings in the

D3/D7 system. Note that some of the modes are tachyonic.

considerations. In fact the second lowest-lying δR-mode becomes tachyonic at the second

turn-around and it seems to suggest that at the i’th turn of the spiral, the δR-mode with

n = i − 1, ℓ3 = 0 becomes tachyonic. We have found no other evidence of instabilities in

other modes. In particular, we have made a detailed examination of the spin-one mesons

corresponding to excitations of the worldvolume gauge field. In this case, the observed

behaviour is very similar to that of the pseudoscalar δφ modes. It is not surprising that

a dynamical instability manifests itself in these δR-modes, since in the region near the

critical solution, the nonuniqueness that brings about the phase transition arises precisely

because the branes have slightly different radial profiles R(r).

While a dynamical instability set in for the Minkowski embeddings, in agreement

with the thermodynamic analysis, it is interesting that this point is away from the phase

transition. In particular, the Minkowski embeddings with R0 ∈ [1.07, 1.15], namely those

between the point at which the phase transition takes place and the first turn-around, do

not exhibit any tachyonic modes. Thus these embeddings are presumably meta-stable and

might be reached through super-cooling.
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Figure 9: Dispersion relation ω(k) for Minkowski D7-brane embeddings with (a) R0 = 1.20

(m = 1.32) and (b) R0 = 2.00 (m = 2.00) in a D3-brane background. The solid blue line corresponds

to δφ fluctuations, whereas the red dashed line corresponds to δR fluctuations.

We have also made some preliminary investigations of these low-lying mesons moving

through the thermal plasma and numerical results are shown in figure 9. For non-relativistic

motion (small three-momenta), we expect that the dispersion relation takes the form

ω(k) ≃ M0 +
k2

2Mkin
, (4.44)

where M0 = M0(T ) is the rest mass calculated above and Mkin = Mkin(T ) is the effective

kinetic mass for a moving meson. Although Mkin(T ) is not the same as M0(T ), for low

temperatures the difference between the two quantities is expected to be small. For ex-

ample, fitting the small-k̃ results for ω̃ for the lowest δR-mode at T/M̄ = 0.5 (or R0 = 2)

yields
ω

M̄
= 6.084 + 0.076

k2

M̄2
+ · · · . (4.45)

Hence in this case, we find M0/M̄ ≃ 6.084 and Mkin/M̄ ≃ 6.579. Recall that at T = 0,

we would have M0 = Mkin = Mgap = 2πM̄ ≃ 6.283M̄ and so both masses have shifted by

less than 5%. Note that while the rest mass has decreased, the kinetic mass has increased.

The latter is perhaps counter-intuitive as it indicates it is actually easier to set the meson

in motion through the plasma than in vacuum. From a gravity perspective, it is perhaps

less surprising as the Minkowski branes are bending towards the black hole horizon and so

these fluctuations experience a greater redshift than in the pure AdS5 × S5 background.

Examining the regime of large three-momenta, we find that ω grows linearly with k.

Naively, one might expect that the constant of proportionality should be one, i.e., the speed

of light. However, one finds that

ω

M̄
= vm

k

M̄
+

M1

M̄
+ O

(

M̄

k

)

. (4.46)

with vm < 1, as illustrated in figure 9. There our numerical results show that for R0 = 1.2

(m = 1.32), vm ≃ 0.353 and M1/M̄ ≃ 4.14 for δR and vm ≃ 0.350 and M1/M̄ ≃ 4.71 for
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Figure 10: The radial profile for δR with R0 = 2 with various spatial momentum. From top to

bottom, the profiles correspond to: k = 0, 4.96, 18.81, 31.4, 39.2, 62.7, 94.1.

δφ, while for R0 = 2 (m = 2) vm ≃ 0.884 and M1/M̄ ≃ 2.61 for either type of fluctuation.

Note that in figure 9b the dispersion relations ω(k) for δR and δφ are nearly coincident

for all k because supersymmetry is being restored at low temperatures. Our results show

that the strongly coupled plasma has a significant effect on reducing the maximum velocity

of the mesons. This effect is easily understood from the perspective of the dual gravity

description. The mesonic states have a radial profile which is peaked near R0, the minimum

radius of the Minkowski embedding, as illustrated in figure 10, and so we can roughly think

of them as excitations propagating along the bottom of the D7-brane. At large k, the speed

of these signals will be set by the local speed of light

c =

√

− gtt

gzz

∣

∣

∣

∣

r=R0

=
f(R0)

f̃(R0)
. (4.47)

The latter gives c ≃ 0.349 for R0 = 1.2 and c ≃ 0.882 for R0 = 2, both of which closely

match our results for vm given above. It is interesting that at finite temperature as k

increases, the radial profiles of the mesonic states seem to become more peaked towards

R0, as illustrated in figure 10. Recall that at T = 0, these profiles are invariant under

boosts in the gauge theory directions. Finally we note that we did not discover any simple

relation between M1 in eq. (4.46) and M0 and Mkin in eq. (4.44).

Note that with the approximations made here, our analysis reveals no dragging forces

on these low-lying mesons from the thermal bath. We expect that these would only ap-

pear through string-loop effects, which in particular would include the Hawking radiation

of the background black hole. This would parallel the similar findings for the drag force

experienced by large-J mesons composed of heavy quarks [42] and by heavy quarks them-
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selves [43, 44]. These large-J mesons also exhibited a maximum velocity similar to the

effect discussed above [42].

5. The D4/D6 system

We now turn to the D4/D6 system, described by the array

0 1 2 3 4 5 6 7 8 9

D4 × × × × ×
D6 × × × × × × ×

(5.1)

In the decoupling limit, the resulting gauge theory is five-dimensional super-Yang-Mills

coupled to fundamental hypermultiplets confined to a four-dimensional defect. In order to

obtain a four-dimensional gauge theory at low energies, one may compactify x4, the D4-

brane direction orthogonal to the defect, on a circle. If periodic boundary conditions for the

adjoint fermions are imposed, then supersymmetry is preserved and the four-dimensional

theory thus obtained is non-confining. In this case the appropriate dual gravitational back-

ground at any temperature is (2.1) with x4 periodically identified. Instead, if antiperiodic

boundary conditions for the adjoint fermions are imposed, then supersymmetry is broken

and the four-dimensional theory exhibits confinement [2] and spontaneous chiral symmetry

breaking [5]. The holographic description at zero-temperature consists then of D6-brane

probes in a horizon-free background, whose precise form is not needed here. At a tem-

perature Tdeconf set by the radius of compactification, the theory undergoes a first order

phase transition at which the gluons and the adjoint matter become deconfined. In the

dual description the low-temperature background is replaced by (2.1). If Tdeconf < Tfun,

the D6-branes remain outside the horizon in a Minkowski embedding, and quark-antiquark

bound states survive [5]. As T is further increased up to Tfun a first order phase transition

for the fundamental matter occurs.

Below we study the thermodynamic and dynamical properties of the D6-branes in the

black D4 background appearing above the deconfinement phase transition. Along the way

we will have to introduce boundary terms to regulate the D6-brane brane action.

5.1 D6-brane embeddings

As in section 3.3, we begin by transforming to the coordinate system with radial coordi-

nate ρ defined in (3.10), which is better adapted to study the brane embeddings in the

background. For p = 4, the radial coordinate is then

(u0ρ)3/2 = u3/2 +
√

u3 − u3
0 , (5.2)

and the black D4-brane metric is

ds2 =
1

2

(u0ρ

L

)3/2
[

−f2

f̃
dt2 + f̃ dx2

4

]

+

(

L

u0ρ

)3/2 u2
0f̃

1/3

21/3

[

dρ2 + ρ2dΩ2
4

]

, (5.3)
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where we now have f(ρ) = 1− 1/ρ3 and f̃(ρ) = 1 + 1/ρ3. From eq. (2.6), the temperature

is given by

T =
3

4π

(u0

L3

)1/2
. (5.4)

We also have the holographic relations for the dual five-dimensional gauge theory

L3 = πgsNcℓ
3
s , g2

YM = 4π2gsℓs , (5.5)

where we remind the reader that the Yang-Mills coupling gYM is now dimensionful.

The D4/D6 intersection is described by the array (5.1). In analogy to the D3/D7 case,

we introduce spherical coordinates {r,Ω2} in the 567-directions, and polar coordinates

{R,φ} on the 89-plane. Computing boundary terms is also facilitated by introducing an

angular coordinate between the r and R directions so that we have, as before,

ρ2 = r2 + R2 , r = ρ sin θ , R = ρ cos θ , (5.6)

and

dρ2 + ρ2dΩ2
4 = dρ2 + ρ2(dθ2 + sin2 θ dΩ2

2 + cos2 θ dφ2) (5.7)

= dr2 + r2dΩ2
2 + dR2 + R2dφ2 . (5.8)

Following our analysis for the D3/D7 system, we choose coordinates on the brane such

that asymptotically the metric naturally splits into a product of the form D4-throat×S2.

We describe the embedding of the D6-brane in terms of χ(ρ) = cos θ(ρ) – note then that

χ = R/ρ. Later, we will have to regulate the Euclidean D6-brane by adding local counter-

terms written in terms of this ‘field.’ The induced metric on the D6-brane is then

ds2 =
1

2

(u0ρ

L

)3/2
[

−f2

f̃
dt2 + f̃ dx2

3

]

(5.9)

+

(

L

u0ρ

)3/2 u2
0f̃

1/3

21/3

[(

1 +
ρ2χ̇2

1 − χ2

)

dρ2 + ρ2(1 − χ2)dΩ2
2

]

,

where, as usual, χ̇ = dχ/dρ. The D6-brane action takes the form

Ibulk

N =

∫

dρ ρ2

(

1 − 1

ρ6

)

√

(1 − χ2)(1 − χ2 + ρ2χ̇2) , (5.10)

where N is given by (3.12) with n = 2:

N =
π

T
NfTD6u

3
0 =

22

36
Nf Nc geff(T )4 T 3 , (5.11)

where geff(T )2 = g2
YMNcT . The resulting equation of motion is

∂ρ

[

ρ4

(

1− 1

ρ6

)

√

1−χ2χ̇
√

1−χ2+ρ2χ̇2

]

+ρ2

(

1− 1

ρ6

)

χ

[
√

1−χ2+ρ2χ̇2

1−χ2
+

√

1−χ2

1−χ2+ρ2χ̇2

]

=0 ,

(5.12)
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and χ asymptotically approaches zero as

χ =
m

ρ
+

c

ρ2
+ · · · , (5.13)

with m and c related to the quark mass and condensate via eqs. (3.15) and (3.16) with

p = 4, n = 2:

Mq =
u0m

25/3πℓ2
s

=
21/3

32
geff(T )2 T m , (5.14)

〈Om〉 = −25/3π2ℓ2
sNfTD6u

2
0c = −25/3

34
Nf Nc geff(T )2T 3c . (5.15)

In this case, we may write m = M̄2/T 2 with

M̄2 =
9

21/3

(

Mq

geff(Mq)

)2

≃ 7.143

(

Mq

geff(Mq)

)2

. (5.16)

The scale M̄ is again related to the mass gap in the meson spectrum of the D4/D6 system

at zero temperature. For either background, the latter must be determined numerically.

In the case of the supersymmetric background, one finds [10, 11]:

m2
gap = 8π2 (1.67)

(

Mq

geff(Mq)

)2

≃ 131.9

(

Mq

geff(Mq)

)2

−→ M̄

mgap

≃ 0.233 . (5.17)

One finds essentially the same result for the confining D4 background [5]. The similarity

of these results is probably a reflection of the underlying supersymmetric structure of the

five-dimensional gauge theory. In the confining theory, the lowest-lying meson is a pseudo-

Goldstone boson, whose mass is determined by the Gell-Mann-Oakes-Renner relation, and

the latter linear form extrapolates directly to the supersymmetric result at large Mq [5].

The equation of motion (5.12) can of course be recast in terms of the R, r coordinates

as

∂r



r2

(

1 − 1

ρ6

)

∂rR
√

1 + (∂rR)2



 = 6
r2

ρ8
R

√

1 + (∂rR)2 , (5.18)

which is again suitable to study the Minkowski embeddings.

For arbitrary m we solved for the D6-brane embeddings numerically. Black hole embed-

dings are most simply described in the χ, ρ coordinates and we used boundary conditions

at the horizon: χ(ρ = 1) = χ0 and χ̇|ρ=1 = 0 for various 0 ≤ χ0 < 1. For Minkowski

embeddings, we used the R, r coordinates and the boundary conditions at the axis were:

R(r = 0) = R0 and ∂rR|r=0 = 0 for R0 > 1. We computed m and c by fitting the numerical

solutions to the asymptotic forms of χ and R given above. In particular, we produced plots

of c versus T/M̄ , as shown in figure 11. Again by increasing the resolution, we are able to

follow the two families of embeddings spiralling in on the critical solution. However, ther-

modynamic considerations indicate that a phase transition occurs at the point indicated

in the second plot.
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Figure 11: Quark condensate c versus temperature T/M̄ for a D6-brane in a D4-brane background.

The dotted vertical line indicates the precise temperature of the phase transition.

5.2 D6-brane thermodynamics

As with the D3/D7 system, we wish to compute the contribution of the fundamental matter

to the free energy, entropy and energy densities. That is, we will calculate the contribu-

tions of the D6-brane to the Euclidean path integral. This requires that we regularise

and renormalise the D6-brane action. We will do this by constructing the appropriate

counterterms.

Using the asymptotic behaviour (5.13) in (5.10) we find that the D6 action contains a

UV divergence, since
Ibulk

N ≃
∫ ρmax

dρ ρ2 ≃ ρmax

3
(5.19)

diverges for ρmax → ∞. We expect the counter-terms that must be supplemented to have

the form
∫

dtEd3x
√

det γ
(

a + bχ2 + cχ4
)

. In the present case, we might expect to pick

additional factors of eχ and eΦ. In any event, we would choose the constants to eliminate

the divergence. Further for a supersymmetric embedding, we should be able to construct

the counter-term action so that the total brane action vanishes.

We take as our ansatz for the counter-terms:

Ibound = 4πL3TD6

∫

dtEd3x
√

det γ e2σ+BΦF (χ)
∣

∣

∣

ρ=ρmax

, (5.20)

where B and F (χ) are a dimensionless constant and functional of χ, both to be determined.

We have also defined e2σ ≡ gθθ; this factor naturally appears in the measure as it is

proportional to the asymptotic volume of the internal S2. Now the boundary metric γij at

ρ = ρmax in the effective five-dimensional (brane) geometry is given by

ds2(γ) =
1

2

(u0ρmax

L

)3/2
(

f2(ρmax)

f̃(ρmax)
dt2E + f̃(ρmax)dx2

3

)

(5.21)

and so
√

det γ = 1
4

(u0ρmax

L

)3
f(ρmax)f̃(ρmax). In this coordinate system we have

e2Φ =
1

2

(u0ρ

L

)3/2
f̃ = e6σ . (5.22)
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Now evaluating the counterterm ansatz (5.20) with the supersymmetric background (u0 =

0) with the profile9 χ = mu0/ρ̃, one finds that the leading divergences cancel if B = −2/3

and F (0) = −1/3. One also finds that a complete cancellation occurs if we choose

F (χ) = −1

3
(1 − χ2)3/2 . (5.23)

Thus, the complete counter-term action can be chosen as either of the following:

Ibound = −4π

3
L3TD6

∫

dtEd3x
√

det γ e2σ−2Φ/3(1 − χ2)3/2
∣

∣

∣

ρ=ρmax

, (5.24)

I ′bound = −4π

3
L3TD6

∫

dtEd3x
√

det γ e2σ−2Φ/3

(

1 − 3

2
χ2

)

∣

∣

∣

ρ=ρmax

. (5.25)

In the second expression, we have kept only the terms which contribute to the divergence in

the small χ expansion — the next term of O(χ4) vanishes as ρmax → ∞. Computationally,

this seems like the easier action with which to work; note however that the first form has

the nice property that, even with finite ρmax, it produces a precise cancellation for the

supersymmetric configuration, i.e., ID6 = Ibulk + Ibound = 0.

Proceeding with I ′bound and using (5.13), the boundary term evaluates to

I ′bound = −4πTD6

3T

(

ρmax
3 − 3

2
m2ρmax − 3mc

)

, (5.26)

where we have divided out the spatial volume Vx — see footnote 3. The total action may

then be written as:

ID6

N = G(m) − 1

3

(

ρmin
3 − 3

2
m2ρmin − 3mc

)

, (5.27)

where the integral is defined as

G(m) =

∫ ∞

ρmin

dρ

[

ρ2

(

1 − 1

ρ6

)

√

(1 − χ2)(1 − χ2 + ρ2χ̇2) − ρ2 +
m2

2

]

. (5.28)

Of course, the free energy follows from this as F = TID6 and then one can compute the

entropy S = −∂F/∂T and the energy E = F + TS. For the computation of the entropy,

one must split the free energy into bulk and boundary terms and evaluate the action of the

derivative on each of the terms, just as was done for the D3/D7 case. We do not present

all the details of the calculation here but simply give the final result:

S

N = −6G(m) + 2

(

ρmin
3 − 3

2
m2ρmin − 4mc

)

, (5.29)

where the integral G was defined in (5.28). The contribution of the D6-brane to the energy

then follows as
E

NT
= −5G(m) +

5

3

(

ρmin
3 − 3

2
m2ρmin −

21

5
mc

)

. (5.30)

9See the discussion below (4.21).
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Figure 12: Free-energy, entropy and energy densities for a D6-brane in a D4-brane background.

The blue dashed (red continuous) curves correspond to the Minkowski (black hole) embeddings.

The dotted vertical line indicates the precise temperature of the phase transition.

Using our numerical results, these thermodynamic quantities are plotted in figure 12.

Again the free energy density shows the classic ‘swallow tail’ form and, to our best numerical

accuracy, a first order phase transition takes place at Tfun/M̄ = 0.7933 (or m = 1.589),

where the free energy curves for the Minkowski and black hole phases cross. The fact that

the transition is first order is illustrated by the entropy and energy densities, which make

a finite jump at this temperature between the points labelled A and B.

5.3 Meson spectrum for Minkowski embeddings

The meson spectrum corresponding to fluctuations of the D6-brane in the black D4-brane

geometry is computed in the same way as for D3/D7. We focus here on Minkowski em-

beddings for which the spectrum is discrete and stable. The excitations of the black hole

embeddings will be described by a spectrum of quasinormal modes, as discussed else-

where [12, 13].
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We consider small fluctuations δR, δφ about the fiducial embedding, which we now

denote by Rv, so that the D6-brane embedding is specified by R = Rv(r) + δR(xa) and

φ = 0+ δφ(xa), where Rv(r) satisfies (5.18). The pull-back of the bulk metric (5.3) is then

P [G]ab =gab+

(

L

u0ρ

)3/2 u2
0f̃

1/3

21/3

{

Ṙv [(∂aδR)δr
b +(∂bδR)δr

a]+(∂aδR)∂bδR+R2(∂aδφ)∂bδφ
}

,

(5.31)

where the metric g is given by

ds2(g) =
1

2

(u0ρ

L

) 3
2

[

−f2

f̃
dt2 + f̃dx2

3

]

+

(

L

u0ρ

) 3
2 u2

0f̃
1
3

2
1
3

[

(1 + Ṙ2
v)dr2 + r2dΩ2

2

]

(5.32)

and, as usual, ρ2 = r2 + R2. The DBI action yields the D6-brane Lagrangian density to

quadratic order in the fluctuations δR, δφ:

L = L0 − TD6

u3
0

4
r2
√

h

√

1 + Ṙ2
v

{

f f̃

(

L

u0ρv

)3/2 u2
0f̃

1/3

24/3

∑

a

gaa
v

[

(∂aδR)2

1 + Ṙ2
v

+ R2(∂aδφ)2
]

+
3RvṘv∂r(δR)2

ρ8
v(1 + Ṙ2

v)
+

3(δR)2

ρ8
v

− 24R2
v(δR)2

ρ10
v

}

, (5.33)

where h is the determinant of the metric on the S2 of unit radius, ρ2
v = r2 + R2

v, and L0 is

the Lagrangian density for the vacuum embedding:

L0 = −TD6

u3
0

4
r2
√

h

√

1 + Ṙ2
v

(

1 − 1

ρ6
v

)

. (5.34)

Note that terms linear in δR were eliminated from the Lagrangian density L by integration

by parts and by using the equation of motion (5.18) for Rv. Since we are retaining terms

only to quadratic order in the fluctuations, the metric gv in (5.33) is (5.32) with R = Rv

and the functions f and f̃ in (5.33) and subsequent expressions are evaluated at ρv.

The linearised equations of motion for the fluctuations are then

∂a

[

f f̃

(

L

u0ρv

)3/2 u2
0f̃

1/3

21/3
r2
√

hR2
v

√

1 + Ṙ2
v gab

v ∂bδφ

]

= 0 (5.35)

for δφ, and

∂a



f f̃

(

L

u0ρv

)3/2 u2
0f̃

1/3

21/3

r2
√

h
√

1 + Ṙ2
v

gab
v ∂bδR





= 6
r2

ρ8
v

√
h

√

1 + Ṙ2
v

(

1 − 8R2
v

ρ2
v

)

δR − 6
√

h∂r





r2

√

1 + Ṙ2
v

RvṘv

ρ8
v



 δR

for δR. Proceeding via separation of variables, we take

δφ = P(r)Yℓ2(S2) e−iωteik·x, δR = R(r)Yℓ2(S2) e−iωteik·x (5.36)
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where Yℓ2(S2) are spherical harmonics on the S2 of unit radius satisfying ∇2
S2Yℓ2 =

−ℓ2(ℓ2 + 1)Yℓ2 . We obtain the radial differential equation

∂r





r2f f̃R2
v

√

1 + Ṙ2
v

∂rP



 + fR2
v

√

1 + Ṙ2
v

[

22/3 r2

ρ3
v

f̃1/3

(

f̃2

f2
ω̃2 − k̃2

)

− ℓ2(ℓ2 + 1)f̃

]

P = 0

(5.37)

for δφ and

∂r

[

r2f f̃

(1 + Ṙ2
v)

3
2

∂rR
]

+
f

√

1 + Ṙ2
v

[

22/3 r2

ρ3
v

f̃1/3

(

f̃2

f2
ω̃2 − k̃2

)

− ℓ2(ℓ2 + 1)f̃

]

R

= 6





r2

ρ8
v

√

1 + Ṙ2
v

(

1 − 8R2
v

ρ2
v

)

− ∂r





r2RvṘv

ρ8
v

√

1 + Ṙ2
v







R

for δR. The dimensionless constant ω̃ is related to ω via

ω2 = ω̃2 u0

L3
= ω̃2

(

4π

3

)2

T 2 = ω̃2

(

4π

3

)2 M̄2

m
, (5.38)

and analogously for k̃.

We solved (5.38) and (5.37) numerically and determined the eigenvalues ω̃ using a

shooting method, as was done in the D3/D7 case. The masses are given by M2 = ω2 in the

frame in which the three momentum vanishes: k = 0. The spectra M2/M̄2 versus T/M̄

for the angular fluctuations δφ and the radial fluctuations δR are presented in figures 13

and 14, respectively (both for ℓ = 0), and are qualitatively the same as those for the D3/D7

system: the δR and δφ modes become degenerate in the zero-temperature limit, reflect-

ing supersymmetry restoration; in general the meson masses decrease as the temperature

increases, especially near the critical solution; and the results for δR fluctuations suggest

that a new mode becomes tachyonic at each turn-around of the curves.

6. Discussion

We have shown that, in a large class of strongly coupled gauge theories with fundamen-

tal fields, this fundamental matter undergoes a first order phase transition at some high

temperature Tfun ∼ M̄ , where M̄ is a scale characteristic of the meson physics. As well as

giving the mass gap in the meson spectrum [9], 1/M̄ is roughly the characteristic size of

these bound states [45, 11]. In our models, the gluons and other adjoint fields were already

in a deconfined phase at Tfun, so this new transition is not a confinement/deconfinement

transition. Neither is it a chiral symmetry-restoration phase transition, since the chiral

condensate 〈ψ̄ψ〉 ∝ c that breaks the axial U(1)A symmetry does not vanish above Tfun.
10

10The large-Nc theories under consideration enjoy an exact U(1)A symmetry, just like QCD at Nc = ∞.

However, unlike QCD, they do not possess a non-Abelian SU(Nf)L ×SU(Nf)R chiral symmetry. Recall also

that lattice simulations indicate that, in Nc = 3 QCD with real-world quark masses, deconfinement and

chiral symmetry restoration do not occur with a phase transition but through a smooth cross-over [46].
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Figure 13: Mass spectrum M2 = ω2|k=0 for the δφ fluctuations for Minkowski embeddings in the

D4/D6 system. The dashed vertical line marks the phase transition.

The most striking feature of the new phase transition is the change in the meson spectrum

and so we refer to it as a ‘dissociation’ or ‘melting’ transition.

In the low-temperature phase, below the transition, the mesons are deeply bound

and the spectrum is discrete and gapped. To leading order in the large-Nc expansion these

states are absolutely stable, but at higher orders they may decay into other mesons of lower

mass or glueballs. The leading channel is one-to-two meson decay and after examining the

interactions in the effective action [9], we find that parametrically the width of a typical

state is given by Mq/(Nc λ3/2) ≃ Mgap/(Nc

√
λ). Recall that this is not a confining phase

and so we can also introduce free quarks into the system. Of course, such a quark is

represented by a fundamental string stretching between the D7-branes and the horizon.

At a figurative level, in this phase, we might describe quarks in the adjoint plasma as a

‘suspension’. That is, when quarks are added to this phase, they retain their individual

identities.

Above the phase transition (i.e., at T > Tfun), the meson spectrum is continuous and

gapless. The excitations of the fundamental fields would be characterised by a discrete
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Figure 14: Mass spectrum M2 = ω2|k=0 for the δR fluctuations for Minkowski embeddings in the

D4/D6 system. The dashed vertical line marks the phase transition while the dotted horizontal line

marks M2 = 0. Note that some modes become tachyonic.

spectrum of quasinormal modes on the black hole embeddings [12, 13]. Investigations of

the spectral functions [13] show that some interesting structure remains near the phase

transition. Some of these excitations may warrant an interpretation in terms of quasipar-

ticle excitations but in any event, there are only a few such states in contrast with the

(nominally) infinite spectrum of mesons found in the low temperature phase. An appro-

priate figurative characterisation of the quarks in this high temperature phase would be as

a ‘solution’. If one attempts to inject a localised quark charge into the system, it quickly

spreads out across the entire plasma and its presence is reduced to diffuse disturbances of

the supergravity and worldvolume fields, which are soon damped out [12, 13].

The physics above is potentially interesting in connection with QCD, since lattice sim-

ulations indicate that heavy-quark mesons indeed remain bound in a range of temperatures

above Tdeconf. For example, for the lightest charmonium states, the melting temperature

may be conservatively estimated to be around 1.65Tdeconf ≃ 249 to 317 MeV [14, 15], de-

pending on the precise value of Tdeconf [17]. Some other studies suggest that the J/ψ(1S)
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state may persist to ∼ 2.1Tdeconf ≃ 317 to 403 MeV [16]. In the D3/D7 model, we see

from figure 5 that quark-antiquark bound states melt at Tfun ≃ 0.766M̄ . The scale M̄ is

related to the mass M∗ = Mgap of the lightest meson in the theory at zero temperature

through eq. (4.15). Therefore we have Tfun(M
∗) ≃ 0.122M∗. For the charmonium states

above, taking M∗ ≃ 3000 MeV gives Tfun(cc̄) ≃ 366 MeV. Similarly, for the D4/D6 system

we have (5.17) which yields M̄ ≃ 0.233M∗. The transition temperature in this case is then

Tfun ≃ 0.793M̄ ≃ 0.186M∗, which gives Tfun(cc̄) ≃ 557 MeV. Hence it is gratifying that

these comparisons lead to a qualitative agreement with the lattice results.

Of course, these comparisons must be taken with some caution, since meson bound

states in Dp/Dq systems are deeply bound, i.e., M∗ ≪ 2Mq, whereas the binding energy

of charmonium states is a small fraction of the charm mass, i.e., Mcc̄ ≃ 2Mc. It might then

be more appropriate to compare with lattice results for ss̄ bound states which are also seen

to survive the deconfinement transition. For the φ-meson, whose mass is Mφ ≃ 1020 MeV,

the formulas above yield Tfun(ss̄) ≃ 124 MeV (D3/D7) and Tfun(ss̄) ≃ 188 MeV (D4/D6).

Lattice simulations suggest that the melting temperature is around 1.4Tdeconf ≃ 211 to

269 MeV [47, 15]. While again we have qualitative agreement, one must observe that at

least for the D3/D7 calculation, our result lies below even the lowest estimate for Tdeconf ≃
151 MeV.

An additional caveat is that here we have identified the melting temperature with Tfun,

above which the discrete meson states disappear. However, the spectral function of some

two-point meson correlators in the holographic theory still exhibit some broad peaks in

a regime just above Tfun, which suggests that a few bound states persist just above the

phase transition [13]. This is quite analogous to the lattice approach where similar spectral

functions are used to examine the existence or otherwise of the bound states. Hence using

Tfun above should be seen as a (small) underestimate of the melting temperature.

Before leaving this discussion of comparisons with QCD, we reiterate that the present

holographic calculations are examining exotic gauge theories and so any agreements above

must be regarded with a skeptical eye. However, we would also like to point out one

simple physical parallel between all of these systems. The question of charmonium bound

states surviving in the quark-gluon plasma was first addressed by comparing the size of the

bound states to the screening length in the plasma [48]. While the original calculations

have seen many refinements (see, e.g., [49]), the basic physical reasoning remains sound

and so we might consider applying the same argument to the holographic gauge theories.

Considering first the N = 2 SYM theory arising from the D3/D7 system, the size of the

mesons can be inferred from the structure functions in which the relevant length scale

which emerges is
√

λ/Mq [45]. Holographic studies of Wilson lines in a thermal bath [50]

show that the relevant screening length of the SYM plasma is order 1/T . In fact, the same

result emerges from a field theoretic scheme of hard-thermal-loop resummation applied to

SYM theories [51]. In any event, combining these results, the argument that the mesons

should dissociate when the screening length is shorter than the size of these bound states

yields T ∼ Mq/
√

λ. Of course, the latter matches the results of our detailed calculations

in section 4. The same reasoning can be applied to the D4/D6 system where the meson

size is O(geff(Mq)/Mq) [11] and the screening length is again O(1/T ) [52]. Hence this line
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of reasoning again leads to a dissociation temperature in agreement with the results of

section 5. Therefore we see that the same physical reasoning which was used so effectively

for the J/ψ in the QCD plasma can also be used to understand the dissociation of the

mesons in the present holographic gauge theories.

One point worth emphasising is that there are two distinct processes that are occurring

at T ∼ M̄ . If we consider, e.g., the entropy density in figure 5, we see that the phase

transition occurs in the midst of a cross-over signalled by a rise in S/T 3. We may write

the contribution of the fundamental matter to entropy density as

Sfun =
1

8
λNf Nc T 3 H

(

T 2

M2
q /λ

)

(6.1)

where H(x) is the function plotted in figure 5. H rises from 0 at x = 0 to 2 as x → ∞ but

the most dramatic part of this rise occurs in the vicinity of x = 1. Hence it seems that

new degrees of freedom, i.e., the fundamental quarks, are becoming ‘thermally activated’

at T ∼ M̄ . We might note that the phase transition produces a discontinuous jump in

which H only increases by about 0.07, i.e., the jump at the phase transition only accounts

for about 3.5% of the total entropy increase. Thus the phase transition seems to play an

small role in this cross-over and produces relatively small changes in the thermal properties

of the fundamental matter, such as the energy and entropy densities.

As M̄ sets the scale of the mass gap in the meson spectrum, it is tempting to associate

the cross-over above with the thermal excitation of mesonic degrees of freedom. However,

the pre-factor λNf Nc in (6.1) indicates that this reasoning is incorrect. If mesons provided

the relevant degrees of freedom,11 we should have Sfun ∝ N2
f . Instead the factor of NfNc

is naturally interpreted as counting the number of degrees of freedom associated with free

quarks, with the factor λ demonstrating that the contribution of the quarks is enhanced

at strong coupling. A complementary interpretation of (6.1) comes from reorganizing the

pre-factor as:

λNf Nc = (g2
YM Nf)N2

c . (6.2)

The latter expression makes clear that the result corresponds to the first order correction of

the adjoint entropy due to loops of fundamental matter. As discussed in [34], we are working

in a ‘not quite’ quenched approximation, in that thermal contributions of the D7-branes

represent the leading order contribution in an expansion in Nf/Nc, and so fundamental

loops are suppressed but not completely. In [34], it was shown that the expansion for the

classical gravitational back-reaction of D7-brane is controlled by λNf/Nc = g2
YM Nf. Hence

this expansion corresponds to precisely the expansion in loops of fundamental matter.

However, naively the fundamental loops would be suppressed by factors of T 2/M2
q coming

from the quark propagators. So from this point of view, the strong coupling enhancement

corresponds to the fact that such factors only appear as λT 2/M2
q in eq. (6.1).

11In fact we will find a contribution proportional to N2
f for the mesons coming from the fluctuation

determinant around the classical D7-brane configuration. One can make an analogy here with the entropy

of the adjoint fields of N = 4 SYM on S3 below the deconfinement transition. In this case, the classical

gravity saddle-point yields zero entropy and one must look at the fluctuation determinant to see the entropy

contributed by the supergravity modes, i.e., by the gauge-singlet glueballs.
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Figure 15: A qualitative representation of the simplest possibility interpolating between the weak

and the strong coupling regimes. The solid and the dotted lines correspond to T = Tfun. At strong

coupling this corresponds to a first-order phase transition (solid line), whereas at weak coupling it

corresponds to a cross-over (dotted line). The dashed line corresponds to T = Tactiv. At strong-

coupling this takes place immediately after the phase transition, whereas at weak coupling it is

widely separated from Tfun.

Hence the strongly coupled theory brings together these two otherwise distinct pro-

cesses. That is, at strong coupling, the dissociation of the bound states and the thermal

activation of the fundamental matter happen at essentially the same temperature. While

our discussion above focused on the D3/D7 system, the D4/D6 results exhibit the same

behaviour. Hence this seems to be a universal feature of the holographic gauge theories

described by Dp/Dq systems.

The preceding behaviour might be contrasted with that which is expected to occur

at weak coupling. In this regime, one expects that the melting of the mesons would also

be a cross-over rather than a (first-order) phase transition. Moreover, the temperature

at which the mesons dissociate would be Tfun ∼ Ebind ∼ g4
effMq. On the other hand, the

quarks would not be thermally activated until we reach Tactiv ∼ 2Mq, at which point free

quark-antiquark pairs would be readily produced. Of course, the thermal activation would

again correspond to a cross-over rather than a phase transition. The key point, which we

wish to emphasise, is that these two temperatures are widely separated at weak coupling.

Figure 15 is an ‘artistic’ representation of the simplest behaviour which would inter-

polate between strong and weak coupling. One might expect that the melting point and

the thermal activation are very close for geff ≫ 1. The line of first order phase transi-

tions must end somewhere and so one might expect that it terminates at a critical point

around geff ∼ 1. Below this point, both processes would only represent cross-overs and their

respective temperatures would diverge from one another, approaching the weak coupling

behaviour described above.

There are two aspects to enhancement of the thermal densities discussed above. First,

at strong coupling the fundamental matter has a stronger effect on the nonabelian plasma

than might have been otherwise guessed and second the effect is a positive one. That is,
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e.g., the energy and entropy densities are raised. Because we are working with Nf/Nc ≪ 1,

the enhancement we observe is a small correction to the overall properties of the plasma.

In fact, it can be added to a list of such correction terms, with others arising as finite-λ [53]

and finite-Nc effects. Both12 of these types of corrections are expected to raise the entropy

and energy densities of the plasma, as well.

As our calculations were also performed in the limit Nc, λ → ∞ (with Nf fixed), it is

natural to ask how the detailed results of our paper depend on this approximation. First

of all, the fact that the phase transition is first order implies that it should be stable

under small perturbations and so its order and other qualitative details should hold within

a finite radius of the 1/Nc, 1/λ expansions. Of course, finite-Nc and finite-λ corrections

may eventually modify the behaviour uncovered here. For example, at large but finite

Nc the black hole will Hawking-radiate and each bit of the brane probe will experience a

thermal bath at a temperature determined by the local acceleration. This effect becomes

more and more important as the lower part of a Minkowski brane approaches the horizon,

and may potentially blur the self-similar, scaling behaviour found here. However, at the

phase transition, the minimum separation of brane embeddings and the horizon is not

parametrically small. For example, R0 = 1.1538 at the transition for D3/D7 system. Hence

while the Hawking radiation can be expected to interfere with the self-similar behaviour

near the critical embedding, it should not disturb the phase transition for large but finite

Nc.

Finite ’t Hooft coupling corrections correspond to higher-derivative corrections both

to the supergravity action and the D-brane action. These may also blur the details of

the structure discussed above. For example, higher-derivative corrections to the D-brane

equation of motion are likely to spoil the scaling symmetry of eq. (3.5), and hence the

self-similar behaviour. These corrections will again become important near the critical

solution, for both Minkowski and black hole embeddings, since the (intrinsic) curvature

of the brane becomes large there. However, the phase transition should remain robust for

large but finite λ because at this point, the separation of brane embeddings from the critical

solution is not parametrically small. We illustrated this for the Minkowski embedding at

the phase transition of D3/D7 above but here we can add the same is true for the black

hole embedding at this point, which has χ0 = 0.9427.

Another significant set of corrections come from the gravitational backreaction of the

D7-branes (or more generally the probe Dq-branes) on the background spacetime or from

fundamental loops in the gauge theory. As indicated above, these are dual descriptions of

the same expansion. Our results only represent the first contribution in an infinite series of

terms, whose magnitudes are controlled by the ratio Nf/Nc. Given that low energy QCD

has Nf/Nc = 1, it is of particular interest to study holographic theories in Veneziano’s limit

of gYM → 0, Nc → ∞ with both λ and Nf/Nc finite [54]. A variety of attempts have been

made to construct gravitational backgrounds describing gauge theories in this limit [55].

The D2/D6 system provides one interesting background where this limit was studied

12At finite Nc, the classical black hole would be surrounded by a gas of Hawking radiation which would

increase both the entropy and energy.
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at finite temperature [56].13 In particular, it was found that the energy density scales as

F ∼ N
1/2
f N3/2

c T 3, which obviously differs from (3.19) with p = 2, d = 2. This discrepancy

is not at all a contradiction and has the same origin as the discrepancy found for the meson

spectrum [10, 11]. This is the fact that the calculation in [56] applies in the far infrared

of the gauge theory, whereas that presented here applies at high temperatures, i.e., at

T ≫ g2
YM.

We close with a few more observations. Ref. [58] argued for the existence of plasma

balls in a broad class of confining large-Nc theories, which undergo first order deconfinement

phase transitions. That is, in these theories, one could form metastable, localised lumps

of deconfined gluon plasma. Their dual description should consist of black holes localised

along some gauge theory directions. One may imagine an analogous construction for the

fundamental matter, based on the first order phase transition discussed here. That is, near

Tfun one should be able to construct inhomogenous brane configurations in which only a

localised region on the branes has fallen through the black hole horizon, i.e., the induced

brane metric would contain a localised black hole. The dual gauge theory interpretation

would be in terms of a localised bubble inside of which the fundamental matter has melted.

Such bubbles may be of interest for understanding how the melting transition actually

occurs in a dynamical context.

Finally, we comment on the ‘quark condensate’ at high temperatures. If one examines

figure 4 for example, it is tempting to infer that, since c approaches zero as T → ∞, the

quark condensate vanishes in this limit. This vanishing would then be in agreement with the

intuition that at high temperatures the thermal fluctuations should destroy any coherent

condensate. However, vanishing c is not enough to ensure that 〈Om〉 also vanishes. In

fact, if we combine eqs. (4.14) and (A.8), we see that at high temperatures the condensate

actually grows as

〈Om〉 ∼ NcNfMqT
2 . (6.3)

At this point, it is important to recall the form of the full operator Om given in eq. (3.17).

The first two terms are dimension-three operators and so in the high temperature limit

we can expect the magnitude of typical fluctuations in these to be O(T 3). Further these

operators do not have a definite sign and so presumably their expectation value vanishes

when averaging over all fluctuations in the disordered high-temperature system. This,

of course, is the basis of the intuition that 〈ψ̄ψ〉 → 0. Now the last term in eq. (3.17)

is only a dimension-two operator and so we expect thermal fluctuations to be of O(T 2).

The key difference in this case is that the operator only takes positive real values and so

averaging over all fluctuations we expect 〈q†q〉 ∝ T 2. Hence our calculations make a precise

prediction for this expectation value in the high-temperature phase. Note though that this

is a thermal expectation value and not a coherent (zero-momentum) condensate, which we

expect that we are observing with 〈Om〉 6= 0 at low temperatures.

Hence it is interesting that the high temperature phase seems to display two distinct

regimes of behaviour. At very high temperatures, the physics is dominated by incoherent

thermal fluctuations of the fundamental fields, as expected. However, there is also a regime

13The meson spectrum at T = 0 including the backreaction of the D6-branes has been studied in [57].
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just above the phase transition where the system can support a coherent condensate. This

regime would correspond to the region where |c|/T 3 is still growing in figure 4. Of course,

there is a cross-over between these two regimes and so there is only a rough boundary. It

may be natural to define the latter as the point where c is extremized, i.e., T ≃ 1.2M̄ .

Again, this seems to be a universal property of the broad class of holographic theories

described by Dp/Dq systems. For example, figure 11 indicates the same behaviour for

D6-branes in a D4 background.

The above seems to be one more facet of the rich phenomenology which these holo-

graphic theories display at finite temperature. However, this phenomenology presents

several puzzles, such as why Tfun ∼ M̄ rather than Mq is the scale at which the bound

states melt or at which the free quarks are thermally excited. For example, the former

seems counterintuitive in view of the fact that, in the regime of strong coupling considered

here, this temperature is much lower than the binding energy of the mesons:

Ebind ∼ 2Mq − M̄ ∼ 2Mq . (6.4)

However, this intuition relies on the expectation that the result of melting a meson is a

free quark-antiquark pair of mass 2Mq. The gravity description makes it clear that this

is not the case at strong coupling. In fact, the constituent quark mass vanishes when the

branes fall into the horizon — see appendix D. Rather, in this regime the system is better

thought of as a strongly coupled liquid of both adjoint and fundamental fields.

In any event, it is gratifying that the holographic description of these gauge theories

with fundamental matter provides once more an extremely simple, geometric interpretation

of some complicated, strong-coupling physics, such as the existence or otherwise of stable

quark-antiquark bound states above the deconfinement temperature. Other well known

examples include the geometric characterisations of confinement [2, 59] and chiral symmetry

breaking [4, 5, 8, 60].
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A. Embeddings for high and low temperatures for D3/D7

A.1 High temperatures (black hole embeddings)

Consider the limit T/M̄ ≫ 1. This corresponds to black hole embeddings with m =

M̄/T ≪ 1. As usual, we use the χ, ρ coordinates. Note that the equatorial D7-brane
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embedding, χ = 0, is an exact solution of the equation of motion (4.11). To study nearby

solutions we expand the bulk portion of the D7-brane action (4.9) to quadratic order in χ

Ibulk

N ≃
∫ ∞

1
dρ

(

1 − 1

ρ8

)

ρ3

(

1 − 3

2
χ2 +

1

2
χ̇2

)

, (A.1)

thus obtaining the linearised equation of motion:

∂ρ

[(

1 − 1

ρ8

)

ρ5χ̇

]

= −3

(

1 − 1

ρ8

)

ρ3χ . (A.2)

To solve this equation, it is useful to make the change of variables x = ρ2 so that it becomes:

x(x4 − 1)(4xχ′′ + 2χ′) + 2x(5x4 + 3)χ′ + 3(x4 − 1)χ = 0 (A.3)

where χ′ = dχ/dx. The solution of this equation satisfying the boundary condition χ′|x=1 =

0 is

χ̃=
4

45
[

Γ
(

1
4

)]2

[

9Γ

(

5

4

)

Γ

(

9

4

)

x1/2F

(

1

4
,
1

2
;
3

4
;x4

)

−5

[

Γ

(

7

4

)]2

x3/2F

(

1

2
,
3

4
;
5

4
;x4

)

]

,

(A.4)

where F (a, b; c; z) is the hypergeometric function satisfying

z(1 − z)F ′′ + [c − (a + b + 1)z]F ′ − abF = 0. (A.5)

The overall normalization of the solution is arbitrary since, we are solving a linear equation.

In the above, we have chosen the normalization such that

χ̃ ≃ 1/x1/2 + c̃/x3/2 , x → ∞ (A.6)

where

c̃ =
Γ

(

−1
4

)

Γ
(

3
4

)2

√
2πΓ

(

1
4

) ≃ −0.456947. (A.7)

The tilde on the solution χ̃ and condensate c̃ indicate that these is the solution for unit

mass. The general solution for arbitrary small mass (or equivalently, high temperatures)

is simply χ = mχ̃ and the condensate is given by

c = mc̃ . (A.8)

A.2 Low temperatures (Minkowski embeddings)

Low-temperature solutions correspond to Minkowski embeddings in which the D7 probe is

very far from the horizon: R0 ≫ 1 or, equivalently, m = M̄/T ≫ 1. In this case, we expect

the brane profile to be nearly flat, i.e., R(r) is approximately constant. This motivates the

ansatz R(r) = R0 + δR(r), where R0 is a large constant. Substituting into eq. (4.16) and

expanding to linear order in δR(r) gives:

∂r

[

r3

(

1 − 1

(r2 + R2
0)

4

)

∂r(δR)

]

= 8
r3R0

(r2 + R2
0)

5
. (A.9)
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Integrating (A.9) and requiring ∂r(δR)|r=0 = 0 we obtain

δR(r) ≃ −R0

3

∫ r

0
dx

1

x3

(

1 − 1

(x2 + R2
0)

4

)−1 [

R2
0 + 4x2

(R2
0 + x2)4

− 1

R6
0

]

= − 1

24R5
0

[

2(3R4
0 − 1) arctan

(

r2

1 + R2
0(R

2
0 + r2)

)

+(−1 − 2R2
0 − 3R4

0) log

(

1 +
r2

R2
0 − 1

)

(1 − 2R2
0 + 3R4

0) log

(

1 +
r2

R2
0 + 1

)

+2R2
0 log

(

1 + (r2 + R2
0)

2

1 + R4
0

)]

. (A.10)

Note that δR|r=0 = 0 while the limit r → ∞ yields:

δR|r→∞ ≃
(

1

12R5
0

− 1

4R0

)

(π

2
− arctan(R2

0)
)

+
1

12R3
0

log

(

R4
0 + 1

R4
0 − 1

)

+
1

8

(

1

3R5
0

+
1

R0

)

log

(

R2
0 + 1

R2
0 − 1

)

− 1

6R5
0

1

r2
+ · · · (A.11)

Recall that for these embeddings R0 ≫ 1 so indeed δR ≪ R0. Note that R(r → ∞) ≃
m + c/r2 so that in the large R0, m limit one has m ≃ R0 + δR|r→∞ and c ≃ −(6R5

0)
−1.

For very large values of R0 we can expand (A.11) further to give m ≃ R0 + 1/2R7
0 as an

approximate expression for the quark mass. Inverting this relation yields

R0 ≃ m − 1

2m7
. (A.12)

We will apply this result in our discussion of the constituent quark mass in appendix D.

B. Computation of the D7-brane entropy

In order to evaluate the expression for the D7-brane entropy density,

S = −∂F

∂T
= −πL2 ∂F

∂u0
, (B.1)

we split the free energy into a bulk and a boundary contribution. We also write pertinent

expressions in terms of the dimensionful variables

ρ̃ = u0 ρ , c̃ = u3
0 c , m̃ = u0 m , (B.2)

to explicitly show the dependences on u0, or, equivalently, the temperature T .

From eq. (4.21),

Fbound = T Ibound = −π2

8
TD7

[

(ρ̃2
max − m̃2)2 − 4m̃c̃

]

(B.3)

so that the boundary contribution to the entropy is

Sbound = −π3

2
L2TD7m̃

∂c̃

∂u0
, (B.4)
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as the quark condensate is the only factor in eq. (B.3) which depends on the position of

the horizon u0. Note that both of the divergent regulator contributions in eq. (B.3) have

been eliminated by this differentiation. The bulk contribution to the free energy is given

by

Fbulk = T Ibulk =
π2

2
TD7u0

4

∫ ρ̃max/u0

ρ̃min/u0

dρ ρ3

(

1 − 1

ρ8

)

(

1 − χ2
) (

1 − χ2 + ρ2 χ̇2
)1/2

. (B.5)

When we differentiate this expression with respect to u0 following eq. (B.1), the derivative

will act in three places: i) the overall factor of u0
4; ii) the explicit (and implicit in ρ̃min)

appearance of u0 in the end-points of the integration; and iii) the field χ which is implicitly

a function of the background mass u0. We consider each of these contributions in turn.

First one has:

Si = −2π3L2TD7u0
3

∫ ρ̃max/u0

ρ̃min/u0

dρ ρ3

(

1 − 1

ρ8

)

(

1 − χ2
) (

1 − χ2 + ρ2 χ̇2
)1/2

. (B.6)

Note that this contribution by itself is divergent in the limit ρ̃max → ∞.

Next consider the contributions from the end-points. At the lower end-point, there

are two possibilities depending on whether the brane ends on the horizon or closes off

above the horizon. If the brane ends on the horizon, ρ̃min = u0 and hence this contribution

vanishes since ∂u0(ρ̃min/u0) = 0. (The integrand also vanishes when evaluated at ρmin =

ρ̃min/u0 = 1.) If the brane closes off above the horizon, ∂u0(ρ̃min/u0) is nonvanishing but

this contribution vanishes because χ = 1 at the end-point. Hence only the upper end-point

at ρ̃max makes a contribution:

Sii = −1

2
π3L2TD7u0

4

[

ρ3

(

1 − 1

ρ8

)

(

1 − χ2
) (

1 − χ2 + ρ2 χ̇2
)1/2

]

ρ̃max/u0

×
(

− ρ̃max

u0
2

)

=
1

2u0
π3L2TD7

(

ρ̃4
max − m̃2ρ̃2

max

)

. (B.7)

where we have substituted the asymptotic expansion (3.14) for χ in the second expression.

Finally, we consider the contributions from the dependence of χ on u0. In this case,

∂u0χ inside the integral can be considered as a variation δχ. Hence after an integration

by parts, this derivative yields the bulk equation of motion for χ inside the integral and

a boundary term coming from the integration by parts. Since χ solves the equation of

motion, only the boundary term contributes to the entropy with

Siii = −1

2
π3L2TD7u0

4

[

ρ5

(

1 − 1

ρ8

)

1 − χ2

(1 − χ2 + ρ2 χ̇2)1/2
χ̇∂u0χ

]ρ̃max/u0

ρ̃min/u0

. (B.8)

Arguments similar to those above show that the contribution at the lower endpoint van-

ishes. If the brane ends on the horizon, the second factor inside the brackets vanishes and

also χ̇ vanishes at the horizon. If the brane closes off above the horizon, χ = 1 at the lower

end-point and so the numerator in the third factor vanishes and also ∂u0χ = 0. Hence
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again, only the upper end-point contributes to the entropy. In order to correctly evaluate

this expression, we express the asymptotic expansion (4.12) in terms of m̃, c̃:

χ =
m̃/u0

ρ
+

c̃/u0
3

ρ3
+ · · · (B.9)

Then in eq. (B.8), we have

χ̇ = ∂ρχ = −m̃/u0

ρ2
− 3

c̃/u0
3

ρ4
+ · · ·

∂u0χ = −m̃/u0
2

ρ
− 3

c̃/u0
4

ρ3
+

∂u0 c̃/u0
3

ρ3
+ · · · (B.10)

Note that it would be incorrect to evaluate ∂u0χ ≃ ∂u0(m̃/ρ) = 0 because in the integral

we have assumed that ∂u0ρ = 0 and so ∂u0 ρ̃ 6= 0. Inserting these expansions in (B.8) yields

Siii = − 1

2u0
π3L2TD7

[

m̃2ρ̃2
max + 6m̃c̃ − m̃4 − u0(∂u0 c̃)m̃

]

. (B.11)

Finally, gathering all the entropy contributions yields:

S = Si + Sii + Siii + Sbound

= − 1

2u0
π3L2TD7

[

4u0
4

∫ ρmax/u0

ρmin/u0

dρ ρ3

(

1 − 1

ρ8

)

(

1 − χ2
) (

1 − χ2 + ρ̃2 χ̇2
)1/2

−ρ4
max + 2m̃2ρ2

max + 6m̃c̃ − m̃4

]

. (B.12)

Note that the boundary terms have provided precisely the correct ρmax terms to regulate

the integral. Hence using (3.12), (4.22) and (4.24), we can express the final result for the

entropy as
S

N = −4G(m) + (ρmin
2 − m2)2 − 6mc . (B.13)

C. Positivity of the entropy

Here we present an analytic proof that the plot of the Dq-brane probe Euclidean action

IDq versus m must exhibit mathematical kinks and not just rapid turn overs.14 Recall that

this is necessary for the entropy S = −∂F/∂T to be positive. We focus here on the case of

black hole embeddings of the D7-brane in the D3-brane background for concreteness, but

the analogous arguments applies to Minkowski embeddings and to other Dp/Dq systems.

The argument proceeds by thinking of the plot ID7(m) as a parametric plot

(m(χ0), ID7(χ0)), where χ0, which plays the role of the parameter along the curve, is

the value of χ at the ‘horizon’ ρ = 1. This is in fact the way we construct the plot: We

choose χ0 as a boundary condition at the horizon and we integrate the differential equation

‘outwards’, thus obtaining a solution ψ(ρ;χ0), from whose asymptotic behaviour we read

14For the sake of this discussion it is irrelevant whether we plot IDq versus m or versus 1/m, as in the

main text.

– 49 –



J
H
E
P
0
5
(
2
0
0
7
)
0
6
7

off m(χ0) and c(χ0). Substituting the solution into the D7-brane action we then obtain

ID7(χ0).

Now the key observation is that if the tangent vector to the curve never vanishes,

then there can be no kinks. In order to have a kink there must be a point at which both

m′ ≡ ∂m/∂χ0 and I ′ ≡ ∂ID7/∂χ0 vanish simultaneously. We know that there are certainly

an infinite number of points at which m′ = 0, because close to criticality the function

m(χ0) is an oscillatory function with both maxima and minima. We will now see that at

each of these points we also have I ′D7 = 0.

The renormalised D7-brane action is ID7 = Ibulk + Ibound, with

Ibulk =

∫ ρmax

ρmin

dρL(χ, χ̇) =

∫ ρmax

ρmin

dρ

(

1 − 1

ρ8

)

ρ3 (1 − χ2)
√

1 − χ2 + ρ2χ̇2 , (C.1)

and

Ibound = −1

4

(

ρmax
4 − 2m2ρmax

2 − 4mc + m4
)

, (C.2)

where we have set N = 1 for simplicity. Using the equation of motion, we see that the

derivative of ID7 is

I ′D7 =
∂ID7

∂χ0
=

[

∂L
∂χ̇

∂χ

∂χ0

]ρmax

ρmin

=

[

(

1 − 1

ρ8

)

ρ3 (1 − χ2)
ρ2χ̇

√

1 − χ2 + ρ2χ̇2

∂χ

∂χ0

]ρmax

ρmin

. (C.3)

The contribution at ρ = ρmin clearly vanishes because ρmin = 1 and χ̇(1) = 0. Asymptoti-

cally we have

χ =
m

ρ
+

c

ρ3
+ O(ρ−4) , (C.4)

and therefore
∂χ

∂χ0
=

m′

ρ
+

c′

ρ3
+ O(ρ−4) . (C.5)

Substituting this into (C.3) we find

I ′D7 =
[

−mm′ρ2 + m3m′ − 3cm′ − mc′ + O(ρ−1)
]

ρ=ρmax
. (C.6)

The derivative of the boundary action is just

I ′bound = mm′ρmax
2 + mc′ + cm′ − m3m′ , (C.7)

so adding everything together we arrive at a simple result in the limit in which the regulator

is removed:

ID7
′ ≡ ∂ID7

∂χ0
= −2cm′ . (C.8)

This formula is useful for a number of reasons. First, it shows that I ′D7 vanishes if and only

if m′ vanishes, as we wanted to see. Second, applying the chain rule we find

∂ID7

∂m
= −2c . (C.9)

Physically we expect that c < 0 always, because the brane is attracted to the horizon, and

this is confirmed by our numerical results. It then follows that ID7 is an increasing function

– 50 –



J
H
E
P
0
5
(
2
0
0
7
)
0
6
7

of m, or equivalently a decreasing function of 1/m, and hence that the entropy is positive.

Third, it provides an alternative expression for ID7, namely

ID7(χ0) = −1

2
− 2

∫ χ0

0
dx c(x)m′(x) , (C.10)

where we have imposed the boundary condition ID7(χ0 = 0) = −1/2, which follows from a

straightforward calculation of the action of the equatorial embedding. This expression can

be used to evaluating ID7 numerically. Moreover, close to criticality one knows the analytic

form of m(χ0) and c(χ0), which should allow one to compute ID7(χ0) analytically.

D. Constituent quark mass in the D3/D7 system

In this section we compute the constituent quark mass Mc for temperatures below and

near the critical temperature for the D3/D7 brane system. A similar analysis has already

been provided in [43].

Our holographic dictionary relates the quark mass Mq to the asymptotic constant m

with eq. (4.13). However this is the bare mass parameter appearing in the microscopic

Lagrangian of the gauge theory. We must expect the physical or constituent mass of a free

quark in the deconfined plasma to receive thermal corrections. Since a free quark corre-

sponds to a string in the D3-brane geometry hanging from a probe D7-brane (Minkowski

embedding) down to the horizon, the constituent quark mass corresponds to the energy of

this configuration.

In the notation of the metric (4.3), (4.7), the string worldsheet is extended in the t, R

directions, localized at r = 0, with induced metric:

ds2 = −1

2

(

u0R

L

)2 f2

f̃
dt2 +

L2

R2
dR2. (D.1)

The Nambu-Goto string action then becomes

Istring = − u0

2πℓ2
s

∫

dtdR f/

√

2f̃ , (D.2)

where, since r = 0, f = 1 − 1/R4 and f̃ = 1 + 1/R4. Identifying the constituent quark

mass with minus the action per unit time of this static configuration, we have

Mc =
u0

2πℓ2
s

√
2

∫ R0

1
dR

(

1 − 1

R4

)(

1 +
1

R4

)−1/2

=
u0

2πℓ2
s

√
2

[

R0

√

1 +
1

R4
0

−
√

2

]

, (D.3)

where we recall that R0 = R(r = 0) is the minimal radius reached by the probe brane.

Given the definition (4.13) for the bare quark mass, we find that

Mc

Mq

=
1

m

[

R0

√

1 +
1

R4
0

−
√

2

]

. (D.4)

Plots of Mc/Mq versus T/M̄ are given in figure 16. In the vicinity of the critical solution,

there are again multiple embeddings for a fixed value of T/M̄ and so the plots of Mc show
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an oscillatory behaviour in this regime. From eq. (D.4), it is clear that as we approach

the critical solution, i.e., R0 → 1, the constituent quark mass goes to zero. Note however

that the phase transition occurs at T/M̄ ≃ 0.7658, which corresponds to R0 ≃ 1.15 —

which is marked with the vertical dotted line in figure 16. Hence the exotic behaviour in

the vicinity of the critical solution will again not be manifest in the physical system.

As the temperature goes to zero, Mc/Mq → 1. This is expected, since for small

temperatures we have m ≫ 1 and we can use the approximate relation (A.12) in (D.4) to

find
Mc

Mq

≃ 1 −
√

2

m
+

1

2m4
− 5

8m8
+ · · · . (D.5)

Since m = 2Mq/
√

λT , this can be finally converted into

Mc

Mq

≃ 1 −
√

λT√
2Mq

+
1

2

(√
λT

2Mq

)4

− 5

8

(√
λT

2Mq

)8

+ · · · . (D.6)

The same expansion appears in [43] but here we have provided an analytic derivation for

the coefficient of the fourth term, which was obtained in [43] by a numerical fit. Note

that the two expansions precisely coincide, however, one must replace λ → 2λ above

because [43] uses a different normalization for the ’t Hooft coupling. This difference arises

from the implicit normalization of the U(Nc) generators: Tr(Ta Tb) = d δab. The standard

field theory convention used in [43] is d = 1/2 while our choice is d = 1, as is prevalent

in the D-brane literature. For temperatures above the phase transition, the branes fall

into the horizon and so naively the constituent quark mass vanishes. Rather it is probably

inappropriate to speak in terms of free quarks in this strongly coupled phase.

E. Holographic Renormalization of the D4-brane

Gauge/gravity duality was originally extended to non-AdS backgrounds in [18]. However,

until recently the discussion of the boundary counter-terms needed for holographic renor-

malization [38] was largely limited to asymptotically AdS backgrounds. It was shown

that these techniques can also be applied in backgrounds describing cascading gauge the-

ory [61]. In principle, we believe it should be possible to extend these techniques to general

gauge/gravity dualities, in some sense by definition to complete the holographic framework.

Here we discuss the construction of surface terms which will regulate the Euclidean action

of a black Dp-brane throat geometry. Again, while formally this may be problematic as

generally the supergravity description is breaking down in the asymptotic region, some

such approach should be possible if we believe a gauge/gravity duality exists. We begin

with discussion on the D4-brane background since this is an interesting place given that it

lifts to an (asymptotically) AdS7 ×S4 background for which the counter-terms are known.

Hence in principle, all we have to do is dimensionally reduce the latter to express them in

terms of the D4-brane description. Given our results for the D4-brane, we make some brief

comments on the general Dp-brane backgrounds.
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Figure 16: Constituent quark mass Mc/Mq as a function of temperature T/M̄ . The vertical dotted

line indicates the temperature of the phase transition while the horizontal line indicates that the

constituent quark mass is roughly Mc/Mq ≃ 0.0212 at the phase transition. Some plots zooming in

on the spiral behaviour for temperatures slightly above the transition temperature are also shown.

Let us begin by introducing the Euclidean background for a black D4-brane:

ds2 =
( r

L

)3/2
(

f(r) dτ2 + d~x 2
)

+

(

L

r

)3/2 (

dr2

f(r)
+ r2dΩ2

4

)

(E.1)

C
(4)
τ1234 = −i

( r

L

)3
, e2Φ =

( r

L

)3/2
,

where

f(r) = 1 − u0
4

r4
(E.2)

and the metric above is in string frame. Recall that the temperature (5.4) and the holo-

graphic relations (5.5) for the dual five-dimensional gauge theory are given in section 5.

The string-frame geometry lifts to eleven dimensions as usual:

ds2
11 = e−2Φ/3(ds2

10) + e4Φ/3dz2 , (E.3)

which for (E.1) yields

ds2 =
r

L

(

f(r) dτ2 + d~x 2 + dz2
)

+

(

L

r

)2 dr2

f(r)
+ L2dΩ2

4

=

(

u

L̃

)2
(

f(u) dτ2 + d~x 2 + dz2
)

+

(

L̃

u

)2
du2

f(u)
+ L2dΩ2

4 , (E.4)
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with r/L = (u/L̃)2, f(u) = 1 − (ω̃/u)6, L̃ = 2L and ω̃2 = 4Lu0. For later discussion, it

will be convenient to express the throat geometry as

ds2
11 = e−2Φ/3

(

ds2
(p+2)−throat + e2σL2dΩ2

8−p

)

+ e4Φ/3dz2 . (E.5)

Here the geometry described by ds2
(p+2)−throat replaces the AdS space, while the (p + 2)-

dimensional field e2σ describes the running of the internal S8−p, and L is the scale which

we will use to replace the AdS scale.

Now in the standard holographic story for AdS/CFT one refers to the gravity action

in the same dimension at the AdS space. A similar reduction can be done for the Dp-brane

throats, i.e., integrate out the internal S8−p, however it seems more natural to think of

them as ten-dimensional geometries. Therefore we will consider the bulk action and the

Gibbons-Hawking surface term are in terms of the full ten (or eleven) dimensions. Note

that in the usual AdSn ×Sm examples, these contributions to the action are identical in n

and n+m dimensions. In particular, note that the sphere factor is constant and so it does

not contribute to the extrinsic curvature in the Gibbons-Hawking term. So the relevant

bosonic terms in the Euclidean actions are:

Ibulk = − 1

16πG11

∫

d11x
√

G

(

R(G) − 1

2 · 4! (F
(4))2

)

(E.6)

= − 1

16πG10

∫

d10x
√

g

[

e−2Φ
(

R(g) + 4(∇Φ)2
)

− 1

2 · 4!(F
(4))2

]

, (E.7)

where we have only kept the terms needed to evaluate the action for the above solution.

Also we have 16πG11 = (2π)8ℓ9
P and 16πG10 = (2π)7ℓ8

s g
2
s = (2π)7ℓ9

P /R11. One subtlety is

that these two bulk actions are only equal up to an integration by parts. As surface terms

play an important role in the following, we must keep track of this term. So in reducing

the M-theory action to the IIA action, one picks up an additional surface term:

− 1

8πG10

∮

d9x
√

h
14

3
e−2Φ n · ∇Φ , (E.8)

where hab denotes the boundary metric in string frame and n is a unit radial vector. Note

that the norm of the latter is fixed by the ten-dimensional string-frame metric. Now we

also need the Gibbons-Hawking surface term, which in eleven dimensions is:

IGH = − 1

8πG11

∮

d10x
√

H K11(G) (E.9)

= −2πR11

8πG11

∮

d9x
√

h e−2Φ

(

K10(g) − 8

3
n · ∇Φ

)

. (E.10)

Combining the two ten-dimensional surface terms yields

I ′GH = − 1

8πG10

∮

d9x
√

h e−2Φ (K10(g) + 2n · ∇Φ) . (E.11)

Note that for the D4 throat geometry, the internal S4 varies with the radial position, and

so the full ten-dimensional geometry contributes to K10(g). Hence part of the role of the
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additional term proportional to the radial gradient of Φ is to cancel the sphere contribution,

as the four-sphere does not contribute in the M-theory calculation. One can check that

the ‘unexpected’ dilaton term in eq. (E.11) arises from transforming the standard gravity

action from Einstein to string frame.

Now the construction of the remaining boundary counter-terms requires a Kaluza-Klein

reduction from ten dimensions [62]. For the case of the D4-brane, we can in principle simply

dimensionally reduce the counter-terms for AdS7, which include a constant or volume term,

as well as terms proportional to R (the intrinsic curvature) and R2. However, we only want

to consider the D4-brane in Poincaré coordinates, i.e., we consider the dual field theory in

a flat background geometry. Hence the intrinsic curvature contributions will vanish and we

need only consider the volume term. Note that the prefactor for the AdS7 counter-terms

involves (8πG7)
−1 and so we can think that this arose from dimensionally reducing over

the internal S4. Hence we write the counter-term as:

Ict =
1

8πG11

∫

S4

d4x
√

γ

∮

∂(AdS7)
d6x

√
H

5

L̃

=
1

8πG11
Ω4 L4

∮

∂M
d5x

√
h 2πR11

5

2L

(

e2σ−2Φ/3
)4/2 (

e4Φ/3
)1/2 (

e−2Φ/3
)5/2

=
5

2

Ω4 L3

8πG10

∮

∂M
d5x

√
h e4σ e−7Φ/3 . (E.12)

So now given the background (E.1), one calculates the Euclidean action IE as the

sum of the three terms above in eqs. (E.7), (E.11) and (E.12). As usual we divide out by

the spatial volume (see footnote 3), in which case all of the thermodynamic quantities are

actually densities. In this way we arrive at

IE = − Ω4L
4

16πG10

βu0
3

2L4
= − 210π7

37G10

L9

β5
= −25π2

37
λN2

c T 5 , (E.13)

which yields the free energy density given in eq. (2.10). One can also check that this result

matches that for a planar AdS7 black hole [22].

Now one can probably extend the counter-term above to general Dp-brane throats.

The prefactor for the (n − 1)-dimensional counter-terms in AdSn × Sm examples involves

(8πGnL̃)−1. Hence we have implicitly dimensionally reduced over the internal Sm and it

seems natural that, for the Dp-branes, the prefactor involve Ω8−pL
7−p/(8πG10) e(8−p)σ =

(8πGp+2L)−1 e(8−p)σ . Then it seems the general rule should be that the counter-term takes

the form

Ict =
A

8πGp+2 L

∮

∂M
dp+1x

√
h e(8−p)σ eBΦ , (E.14)

where we have written the boundary metric in the string frame, as read off from the ten-

dimensional or (p + 2)-dimensional string-frame metric, i.e., ds2
(p+2)−throat in eq. (E.5).

Then A and B are dimensionless constants which are chosen experimentally to cancel

the relevant divergence coming from the bulk and Gibbons-Hawking contributions to the

action.
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